
Sebastien Moret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/47697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of quantum dots in aqueous solution to detect blood fingermarks on non-porous surfaces. Forensic Science International, 2009, 191, 36-41.	1.3	77
2	Use of stains to detect fingermarks. Biotechnic and Histochemistry, 2011, 86, 140-160.	0.7	63
3	Nanoparticles for fingermark detection: an insight into the reaction mechanism. Nanotechnology, 2014, 25, 425502.	1.3	52
4	Detection of fingermarks by colloidal gold (MMD/SMD) – beyond the pH 3 limit. Forensic Science International, 2012, 219, 39-49.	1.3	43
5	Functionalised silicon oxide nanoparticles for fingermark detection. Forensic Science International, 2016, 259, 10-18.	1.3	43
6	Investigation of some of the factors influencing fingermark detection. Forensic Science International, 2018, 289, 381-389.	1.3	41
7	Understanding physical developer (PD): Part I – Is PD targeting lipids?. Forensic Science International, 2015, 257, 481-487.	1.3	33
8	Cadmium-free quantum dots in aqueous solution: Potential for fingermark detection, synthesis and an application to the detection of fingermarks in blood on non-porous surfaces. Forensic Science International, 2013, 224, 101-110.	1.3	28
9	Understanding Physical Developer (PD): Part II – Is PD targeting eccrine constituents?. Forensic Science International, 2015, 257, 488-495.	1.3	27
10	Nanoparticles used for fingermark detection—A comprehensive review. Wiley Interdisciplinary Reviews Forensic Science, 2019, 1, .	1.2	27
11	Microscopic examination of fingermark residues: Opportunities for fundamental studies. Forensic Science International, 2015, 255, 28-37.	1.3	19
12	Further investigations into the single metal deposition (SMD II) technique for the detection of latent fingermarks. Forensic Science International, 2016, 268, 62-72.	1.3	17
13	Evaluation of one-step luminescent cyanoacrylate fuming. Forensic Science International, 2016, 263, 126-131.	1.3	15
14	Impact of one-step luminescent cyanoacrylate treatment on subsequent DNA analysis. Forensic Science International, 2018, 286, 1-7.	1.3	13
15	Latent fingermark detection using functionalised silicon oxide nanoparticles: Method optimisation and evaluation. Forensic Science International, 2019, 298, 372-383.	1.3	13
16	Novel upconverting nanoparticles for fingermark detection. Optical Materials, 2021, 111, 110568.	1.7	12
17	Metal-Organic Frameworks for fingermark detection — A feasibility study. Forensic Science International, 2018, 291, 83-93.	1.3	11
18	Controlling fingermark variability for research purposes: A review. Wiley Interdisciplinary Reviews Forensic Science, 2019, 1, .	1.2	10

SEBASTIEN MORET

#	Article	IF	CITATIONS
19	Latent fingermark detection using functionalised silicon oxide nanoparticles: Optimisation and comparison with cyanoacrylate fuming. Forensic Science International, 2020, 315, 110442.	1.3	10
20	Fingermark detection using upconverting nanoparticles and comparison with cyanoacrylate fuming. Forensic Science International, 2021, 326, 110915.	1.3	10
21	Can â¿¿contaminationâ¿¿ occur in body bags?â¿¿The example of background fibres in body bags used in Australia. Forensic Science International, 2016, 266, 517-526.	1.3	8
22	Evaluation of the use of chemical pads to mimic latent fingermarks for research purposes. Forensic Science International, 2020, 314, 110411.	1.3	8
23	Using handwriting to infer a writer's country of origin for forensic intelligence purposes. Forensic Science International, 2018, 282, 144-156.	1.3	7
24	Paper characteristics and their influence on the ability of single metal deposition to detect fingermarks. Forensic Chemistry, 2019, 12, 8-24.	1.7	7
25	Single metal deposition versus physical developer: A comparison between two advanced fingermark detection techniques. Forensic Science International, 2019, 294, 103-112.	1.3	7
26	Comparison of NIR powders to conventional fingerprint powders. Forensic Science International, 2021, 328, 111023.	1.3	6
27	Production of artificial fingermarks. Part I – Synthetic secretions formulation. Forensic Science International, 2022, 331, 111166.	1.3	6
28	The use of handwriting examinations beyond the traditional court purpose. Science and Justice - Journal of the Forensic Science Society, 2017, 57, 394-400.	1.3	5
29	Potential application of liquid dye penetrants for serial number restoration on firearms. Australian Journal of Forensic Sciences, 2019, 51, 674-684.	0.7	3
30	Latent fingermark detection using functionalised silicon oxide nanoparticles: Investigation into novel application procedures. Forensic Science International, 2022, 335, 111275.	1.3	3
31	An effective Physical Developer (PD) method for use in Australian laboratories. Australian Journal of Forensic Sciences, 2018, , 1-6.	0.7	2
32	The frequency of fingerprint patterns separated by ethnicity and sex in a general population from Sydney, Australia. Australian Journal of Forensic Sciences, 2019, 51, S162-S167.	0.7	2
33	Authors' response to comments on "Evaluation of one-step luminescent cyanoacrylate fuming― Forensic Science International, 2016, 268, e25-e26.	1.3	1
34	Forensic Science: Current State and Perspective by a Group of Early Career Researchers. Foundations of Science, 2017, 22, 799-825.	0.4	1
35	Dataset of coded handwriting features for use in statistical modelling. Data in Brief, 2018, 16, 1010-1024.	0.5	1
36	The potential of using the forensic profiles of Australian fraudulent identity documents to assist intelligence-led policing. Australian Journal of Forensic Sciences, 0, , 1-11.	0.7	1

#	Article	IF	CITATIONS
37	Comment on "Linkage analysis of a model quantitative trait in humans: Finger ridge count shows significant multivariate linkage to 5q14.1†by Medland et al., "Common Genetic Variants Influence Whorls in Fingerprint Patterns†by Ho et al. and "Hot on the Trail of Genes that Shape Our Fingerprints†by Walsh et al Forensic Science International: Genetics, 2018, 36, e14-e16.	1.6	0