Virginie Mengin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4769362/publications.pdf Version: 2024-02-01

VIRCINIE MENCIN

#	Article	IF	CITATIONS
1	Editorial: A Novel Perspective for Photosystem I: An Emerging Hub for the Functional Integration of Photosynthesis and Metabolism. Frontiers in Plant Science, 2022, 13, 871623.	1.7	2
2	The circadian clock mutant <i>lhy cca1 elf3</i> paces starch mobilization to dawn despite severely disrupted circadian clock function. Plant Physiology, 2022, 189, 2332-2356.	2.3	4
3	The <i>Arabidopsis</i> Framework Model version 2 predicts the organism-level effects of circadian clock gene mis-regulation. In Silico Plants, 2022, 4, .	0.8	2
4	Phytochromes control metabolic flux, and their action at the seedling stage determines adult plant biomass. Journal of Experimental Botany, 2021, 72, 3263-3278.	2.4	6
5	Impact of the SnRK1 protein kinase on sucrose homeostasis and the transcriptome during the diel cycle. Plant Physiology, 2021, 187, 1357-1373.	2.3	39
6	Relationship between irradiance and levels of Calvin–Benson cycle and other intermediates in the model eudicot Arabidopsis and the model monocot rice. Journal of Experimental Botany, 2019, 70, 5809-5825.	2.4	23
7	Response of the Circadian Clock and Diel Starch Turnover to One Day of Low Light or Low CO ₂ . Plant Physiology, 2019, 179, 1457-1478.	2.3	52
8	Modeling Protein Destiny in Developing Fruit. Plant Physiology, 2019, 180, 1709-1724.	2.3	33
9	Multiple circadian clock outputs regulate diel turnover of carbon and nitrogen reserves. Plant, Cell and Environment, 2019, 42, 549-573.	2.8	49
10	Photosynthate partitioning to starch in <scp><i>Arabidopsis thaliana</i></scp> is insensitive to light intensity but sensitive to photoperiod due to a restriction on growth in the light in short photoperiods. Plant, Cell and Environment, 2017, 40, 2608-2627.	2.8	82
11	Getting back to nature: a reality check for experiments in controlled environments. Journal of Experimental Botany, 2017, 68, 4463-4477.	2.4	89
12	Leaf Starch Turnover Occurs in Long Days and in Falling Light at the End of the Day. Plant Physiology, 2017, 174, 2199-2212.	2.3	80
13	Metabolite pools and carbon flow during C ₄ photosynthesis in maize: ¹³ CO ₂ labeling kinetics and cell type fractionation. Journal of Experimental Botany, 2017, 68, 283-298.	2.4	104
14	Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure. Open Biology, 2015, 5, 150042.	1.5	42
15	Modelling central metabolic fluxes by constraintâ€based optimization reveals metabolic reprogramming of developing <i>Solanum lycopersicum</i> (tomato) fruit. Plant Journal, 2015, 81, 24-39.	2.8	76
16	Multiscale digital <i>Arabidopsis</i> predicts individual organ and whole-organism growth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4127-36.	3.3	88
17	Anthocyanin Phytochemical Profiles and Antiâ€oxidant Activities of <i>Vitis candicans</i> and <i>Vitis doaniana</i> . Phytochemical Analysis, 2013, 24, 446-452.	1.2	14
18	Anthocyanin identification and composition of wild Vitis spp. accessions by using LC–MS and LC–NMR. Analytica Chimica Acta, 2012, 732, 145-152.	2.6	113