Lee A Fielding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4769217/publications.pdf Version: 2024-02-01

LEE A FIELDING

#	Article	IF	CITATIONS
1	Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Progress in Polymer Science, 2016, 52, 1-18.	24.7	520
2	Thermo-responsive Diblock Copolymer Worm Gels in Non-polar Solvents. Journal of the American Chemical Society, 2014, 136, 5790-5798.	13.7	266
3	RAFT dispersion polymerization in non-polar solvents: facile production of block copolymer spheres, worms and vesicles in n-alkanes. Chemical Science, 2013, 4, 2081.	7.4	259
4	Industrially-relevant polymerization-induced self-assembly formulations in non-polar solvents: RAFT dispersion polymerization of benzyl methacrylate. Polymer Chemistry, 2015, 6, 3054-3062.	3.9	147
5	In situ small-angle X-ray scattering studies of sterically-stabilized diblock copolymer nanoparticles formed during polymerization-induced self-assembly in non-polar media. Chemical Science, 2016, 7, 5078-5090.	7.4	130
6	Novel Pickering Emulsifiers Based on pH-Responsive Poly(2-(diethylamino)ethyl methacrylate) Latexes. Langmuir, 2013, 29, 5466-5475.	3.5	124
7	Vermicious thermo-responsive Pickering emulsifiers. Chemical Science, 2015, 6, 4207-4214.	7.4	108
8	Preparation of Pickering Double Emulsions Using Block Copolymer Worms. Langmuir, 2015, 31, 4137-4144.	3.5	86
9	Synthesis of pH-responsive tertiary amine methacrylate polymer brushes and their response to acidic vapour. Journal of Materials Chemistry, 2011, 21, 11773.	6.7	80
10	One-pot synthesis of an inorganic heterostructure: uniform occlusion of magnetite nanoparticles within calcite single crystals. Chemical Science, 2014, 5, 738-743.	7.4	75
11	Determining the Effective Density and Stabilizer Layer Thickness of Sterically Stabilized Nanoparticles. Macromolecules, 2016, 49, 5160-5171.	4.8	70
12	Occlusion of Sulfate-Based Diblock Copolymer Nanoparticles within Calcite: Effect of Varying the Surface Density of Anionic Stabilizer Chains. Journal of the American Chemical Society, 2016, 138, 11734-11742.	13.7	67
13	All-Acrylic Film-Forming Colloidal Polymer/Silica Nanocomposite Particles Prepared by Aqueous Emulsion Polymerization. Langmuir, 2011, 27, 11129-11144.	3.5	66
14	Critical Dependence of Molecular Weight on Thermoresponsive Behavior of Diblock Copolymer Worm Gels in Aqueous Solution. Macromolecules, 2018, 51, 8357-8371.	4.8	65
15	Structure and Properties of Nanocomposites Formed by the Occlusion of Block Copolymer Worms and Vesicles Within Calcite Crystals. Advanced Functional Materials, 2016, 26, 1382-1392.	14.9	63
16	Preparation of Pickering emulsions and colloidosomes using either a glycerol-functionalised silica sol or core–shell polymer/silica nanocomposite particles. Journal of Materials Chemistry, 2012, 22, 11235.	6.7	61
17	Preparation of Double Emulsions using Hybrid Polymer/Silica Particles: New Pickering Emulsifiers with Adjustable Surface Wettability. ACS Applied Materials & Interfaces, 2014, 6, 20919-20927. 	8.0	60
18	Space science applications for conducting polymer particles: synthetic mimics for cosmic dust and micrometeorites. Chemical Communications, 2015, 51, 16886-16899.	4.1	58

Lee A Fielding

#	Article	IF	CITATIONS
19	Phosphonic Acid-Functionalized Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly: Synthesis, Characterization, and Occlusion into Calcite Crystals. Macromolecules, 2016, 49, 192-204.	4.8	58
20	Sulfate-based anionic diblock copolymer nanoparticles for efficient occlusion within zinc oxide. Nanoscale, 2015, 7, 6691-6702.	5.6	55
21	Visible Mie Scattering from Hollow Silica Particles with Particulate Shells. Chemistry of Materials, 2014, 26, 1270-1277.	6.7	45
22	ls Carbon Black a Suitable Model Colloidal Substrate for Diesel Soot?. Langmuir, 2015, 31, 10358-10369.	3.5	45
23	Synthesis and pH-responsive dissociation of framboidal ABC triblock copolymer vesicles in aqueous solution. Chemical Science, 2018, 9, 1454-1463.	7.4	42
24	Incorporating Diblock Copolymer Nanoparticles into Calcite Crystals: Do Anionic Carboxylate Groups Alone Ensure Efficient Occlusion?. ACS Macro Letters, 2016, 5, 311-315.	4.8	40
25	Mechanistic Insights into Diblock Copolymer Nanoparticle–Crystal Interactions Revealed via <i>in Situ</i> Atomic Force Microscopy. Journal of the American Chemical Society, 2018, 140, 7936-7945.	13.7	40
26	Correcting for a Density Distribution: Particle Size Analysis of Core–Shell Nanocomposite Particles Using Disk Centrifuge Photosedimentometry. Langmuir, 2012, 28, 2536-2544.	3.5	36
27	Spatially Controlled Occlusion of Polymerâ€Stabilized Gold Nanoparticles within ZnO. Angewandte Chemie - International Edition, 2019, 58, 4302-4307.	13.8	35
28	RAFT Aqueous Dispersion Polymerization of <i>N</i> -(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers. Macromolecules, 2016, 49, 4520-4533.	4.8	32
29	Time-Resolved SAXS Studies of the Kinetics of Thermally Triggered Release of Encapsulated Silica Nanoparticles from Block Copolymer Vesicles. Macromolecules, 2017, 50, 4465-4473.	4.8	30
30	Anisotropic pH-Responsive Hydrogels Containing Soft or Hard Rod-Like Particles Assembled Using Low Shear. Chemistry of Materials, 2017, 29, 3100-3110.	6.7	29
31	Self-assembly of poly(lauryl methacrylate)-b-poly(benzyl methacrylate) nano-objects synthesised by ATRP and their temperature-responsive dispersion properties. Soft Matter, 2017, 13, 2228-2238.	2.7	27
32	Oneâ€Pot Preparation of Conducting Polymerâ€Coated Silica Particles: Model Highly Absorbing Aerosols. Advanced Functional Materials, 2014, 24, 1290-1299.	14.9	23
33	Star Diblock Copolymer Concentration Dictates the Degree of Dispersion of Carbon Black Particles in Nonpolar Media: Bridging Flocculation versus Steric Stabilization. Macromolecules, 2015, 48, 3691-3704.	4.8	22
34	Influence of the Structure of Block Copolymer Nanoparticles on the Growth of Calcium Carbonate. Chemistry of Materials, 2018, 30, 7091-7099.	6.7	22
35	Impact ionisation mass spectrometry of polypyrrole-coated pyrrhotite microparticles. Planetary and Space Science, 2014, 97, 9-22.	1.7	21
36	Stardust Interstellar Preliminary Examination <scp>IX</scp> : Highâ€speed interstellar dust analog capture in Stardust flightâ€spare aerogel. Meteoritics and Planetary Science, 2014, 49, 1666-1679.	1.6	19

Lee A Fielding

#	Article	IF	CITATIONS
37	Determination of Effective Particle Density for Sterically Stabilized Carbon Black Particles: Effect of Diblock Copolymer Stabilizer Composition. Langmuir, 2015, 31, 8764-8773.	3.5	17
38	Self-curing super-stretchable polymer/microgel complex coacervate gels without covalent bond formation. Chemical Science, 2019, 10, 8832-8839.	7.4	15
39	Investigating the influence of solvent quality on RAFT-mediated PISA of sulfonate-functional diblock copolymer nanoparticles. Polymer Chemistry, 2020, 11, 3416-3426.	3.9	14
40	Micronâ€scale hypervelocity impact craters: Dependence of crater ellipticity and rim morphology on impact trajectory, projectile size, velocity, and shape. Meteoritics and Planetary Science, 2014, 49, 1929-1947.	1.6	12
41	Synthesis and characterisation of sterically stabilised polypyrrole particles using a chemically reactive poly(vinyl amine)-based stabiliser. Colloid and Polymer Science, 2013, 291, 77-86.	2.1	9
42	Rationally designed anionic diblock copolymer worm gels are useful model systems for calcite occlusion studies. Polymer Chemistry, 2019, 10, 5131-5141.	3.9	9
43	Spatially Controlled Occlusion of Polymerâ€Stabilized Gold Nanoparticles within ZnO. Angewandte Chemie, 2019, 131, 4346-4351.	2.0	9
44	One-pot precipitation polymerisation strategy for tuneable injectable Laponite®-pNIPAM hydrogels: Polymerisation, processability and beyond. Polymer, 2021, 233, 124201.	3.8	8
45	Morphology of craters generated by hypervelocity impacts of micronâ€sized polypyrroleâ€coated olivine particles. Meteoritics and Planetary Science, 2014, 49, 1375-1387.	1.6	6
46	Physical adsorption of anisotropic titania nanoparticles onto poly(2-vinylpyridine) latex and characterisation of the resulting nanocomposite particles. Journal of Colloid and Interface Science, 2014, 426, 170-180.	9.4	6
47	RAFT miniemulsion polymerisation of benzyl methacrylate using non-ionic surfactant. Polymer Chemistry, 2021, 12, 2122-2131.	3.9	6
48	Preparation and characterisation of graphene oxide containing block copolymer worm gels. Soft Matter, 2022, 18, 2422-2433.	2.7	6
49	Pyridine-functional diblock copolymer nanoparticles synthesized <i>via</i> RAFT-mediated polymerization-induced self-assembly: effect of solution pH. Soft Matter, 2022, 18, 1385-1394.	2.7	5
50	Differential Ablation of Organic Coatings From Micrometeoroids Simulated in the Laboratory. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	5
51	Physical Adsorption of Graphene Oxide onto Polymer Latexes and Characterization of the Resulting Nanocomposite Particles. Langmuir, 2022, 38, 8187-8199.	3.5	1
52	Aerosols: One-Pot Preparation of Conducting Polymer-Coated Silica Particles: Model Highly Absorbing Aerosols (Adv. Funct. Mater. 9/2014). Advanced Functional Materials, 2014, 24, 1186-1186.	14.9	0