Dimitrios A Giannakoudakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/476903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined Effect of Nitrogen―and Oxygenâ€Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors. Advanced Functional Materials, 2009, 19, 438-447.	7.8	1,475
2	Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon, 2008, 46, 1475-1488.	5.4	774
3	MOF–Graphite Oxide Composites: Combining the Uniqueness of Graphene Layers and Metal–Organic Frameworks. Advanced Materials, 2009, 21, 4753-4757.	11.1	563
4	On the Adsorption/Oxidation of Hydrogen Sulfide on Activated Carbons at Ambient Temperatures. Journal of Colloid and Interface Science, 2002, 246, 1-20.	5.0	316
5	Synthesis, Characterization, and Ammonia Adsorption Properties of Mesoporous Metal–Organic Framework (MIL(Fe))–Graphite Oxide Composites: Exploring the Limits of Materials Fabrication. Advanced Functional Materials, 2011, 21, 2108-2117.	7.8	294
6	The synthesis and characterization of copper-based metal–organic framework/graphite oxide composites. Carbon, 2011, 49, 563-572.	5.4	293
7	S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity. Carbon, 2018, 135, 104-111.	5.4	244
8	Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. Journal of Materials Chemistry, 2009, 19, 9176.	6.7	235
9	Exploring the coordination chemistry of MOF–graphite oxide composites and their applications as adsorbents. Dalton Transactions, 2012, 41, 4027.	1.6	217
10	Reactive Adsorption of Ammonia on Cu-Based MOF/Graphene Composites. Langmuir, 2010, 26, 15302-15309.	1.6	213
11	Importance of Structural and Chemical Heterogeneity of Activated Carbon Surfaces for Adsorption of Dibenzothiophene. Langmuir, 2005, 21, 7752-7759.	1.6	206
12	Hydrogen Sulfide Adsorption on MOFs and MOF/Graphite Oxide Composites. ChemPhysChem, 2010, 11, 3678-3684.	1.0	206
13	Adsorption/Oxidation of Hydrogen Sulfide on Nitrogen-Containing Activated Carbons. Langmuir, 2000, 16, 1980-1986.	1.6	196
14	Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: The role of surface and structural parameters. Journal of Molecular Liquids, 2017, 229, 465-471.	2.3	191
15	Reactive adsorption of acidic gases on MOF/graphite oxide composites. Microporous and Mesoporous Materials, 2012, 154, 107-112.	2.2	190
16	Characterization of the surfaces of activated carbons in terms of their acidity constant distributions. Carbon, 1993, 31, 1193-1202.	5.4	187
17	Polymer/Metal Organic Framework (MOF) Nanocomposites for Biomedical Applications. Molecules, 2020, 25, 185.	1.7	173
18	Sewage Sludge-Derived Materials as Efficient Adsorbents for Removal of Hydrogen Sulfide. Environmental Science & Technology, 2001, 35, 1537-1543.	4.6	171

#	Article	IF	CITATIONS
19	Mechanism of Ammonia Retention on Graphite Oxides:  Role of Surface Chemistry and Structure. Journal of Physical Chemistry C, 2007, 111, 15596-15604.	1.5	162
20	Textural and chemical factors affecting adsorption capacity of activated carbon in highly efficient desulfurization of diesel fuel. Carbon, 2009, 47, 2491-2500.	5.4	160
21	Cu–BTC MOF–graphene-based hybrid materials as low concentration ammonia sensors. Journal of Materials Chemistry A, 2015, 3, 11417-11429.	5.2	155
22	Reactions of VX, GD, and HD with Zr(OH) ₄ : Near Instantaneous Decontamination of VX. Journal of Physical Chemistry C, 2012, 116, 11606-11614.	1.5	154
23	MOF–graphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia. Journal of Materials Chemistry, 2009, 19, 6521.	6.7	150
24	Metalâ€free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO ₂ to CO and CH ₄ . ChemSusChem, 2016, 9, 606-616.	3.6	149
25	S-doped micro/mesoporous carbon–graphene composites as efficient supercapacitors in alkaline media. Journal of Materials Chemistry A, 2013, 1, 11717.	5.2	144
26	Toward Understanding Reactive Adsorption of Ammonia on Cu-MOF/Graphite Oxide Nanocomposites. Langmuir, 2011, 27, 13043-13051.	1.6	137
27	MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts. Adsorption, 2011, 17, 5-16.	1.4	133
28	Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. Journal of Molecular Liquids, 2019, 295, 111684.	2.3	131
29	Adsorption of SO2on Activated Carbons: The Effect of Nitrogen Functionality and Pore Sizes. Langmuir, 2002, 18, 1257-1264.	1.6	128
30	On the Mechanism of Hydrogen Sulfide Removal from Moist Air on Catalytic Carbonaceous Adsorbents. Industrial & Engineering Chemistry Research, 2005, 44, 530-538.	1.8	124
31	On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds. Journal of Colloid and Interface Science, 2009, 338, 329-345.	5.0	120
32	Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions. Bioresource Technology, 2020, 297, 122452.	4.8	120
33	H2S adsorption/oxidation on unmodified activated carbons: importance of prehumidification. Carbon, 2001, 39, 2303-2311.	5.4	116
34	Graphite Oxide/Polyoxometalate Nanocomposites as Adsorbents of Ammonia. Journal of Physical Chemistry C, 2009, 113, 3800-3809.	1.5	110
35	Removal of dorzolamide from biomedical wastewaters with adsorption onto graphite oxide/poly(acrylic acid) grafted chitosan nanocomposite. Bioresource Technology, 2014, 152, 399-406.	4.8	110
36	Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review. Journal of Environmental Management, 2018, 227, 354-364.	3.8	110

#	Article	IF	CITATIONS
37	Oxidized g ₃ N ₄ Nanospheres as Catalytically Photoactive Linkers in MOF/g ₃ N ₄ Composite of Hierarchical Pore Structure. Small, 2017, 13, 1601758.	5.2	109
38	Smart textiles of MOF/g-C ₃ N ₄ nanospheres for the rapid detection/detoxification of chemical warfare agents. Nanoscale Horizons, 2017, 2, 356-364.	4.1	105
39	Engineering the surface of a new class of adsorbents: Metal–organic framework/graphite oxide composites. Journal of Colloid and Interface Science, 2015, 447, 139-151.	5.0	101
40	The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon. Journal of Colloid and Interface Science, 2009, 333, 97-103.	5.0	97
41	Effect of 1-(3-phenoxypropyl) pyridazin-1-ium bromide on steel corrosion inhibition in acidic medium. Journal of Colloid and Interface Science, 2019, 541, 418-424.	5.0	97
42	Interactions of Ammonia with the Surface of Microporous Carbon Impregnated with Transition Metal Chlorides. Journal of Physical Chemistry C, 2007, 111, 12705-12714.	1.5	96
43	Enhanced Reactive Adsorption of Hydrogen Sulfide on the Composites of Graphene/Graphite Oxide with Copper (Hydr)oxychlorides. ACS Applied Materials & amp; Interfaces, 2012, 4, 3316-3324.	4.0	94
44	Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons. Journal of Molecular Liquids, 2016, 213, 381-389.	2.3	91
45	Determination of Proton Affinity Distributions for Chemical Systems in Aqueous Environments Using a Stable Numerical Solution of the Adsorption Integral Equation. Journal of Colloid and Interface Science, 1995, 172, 341-346.	5.0	89
46	Graphite Oxides Obtained from Porous Graphite: The Role of Surface Chemistry and Texture in Ammonia Retention at Ambient Conditions. Advanced Functional Materials, 2010, 20, 1670-1679.	7.8	88
47	Activated carbon versus metal-organic frameworks: A review of their PFAS adsorption performance. Journal of Hazardous Materials, 2022, 425, 127810.	6.5	88
48	Effects of Surface Features on Adsorption of SO ₂ on Graphite Oxide/Zr(OH) ₄ Composites. Journal of Physical Chemistry C, 2010, 114, 14552-14560.	1.5	87
49	Activated carbon-based gas sensors: effects of surface features on the sensing mechanism. Journal of Materials Chemistry A, 2015, 3, 3821-3831.	5.2	87
50	Reactive adsorption of hydrogen sulfide on graphite oxide/Zr(OH)4 composites. Chemical Engineering Journal, 2011, 166, 1032-1038.	6.6	86
51	ZnFe2O4/activated carbon as a regenerable adsorbent for catalytic removal of H2S from air at room temperature. Chemical Engineering Journal, 2020, 394, 124906.	6.6	86
52	Removal of ammonia by graphite oxide via its intercalation and reactive adsorption. Carbon, 2007, 45, 2130-2132.	5.4	82
53	Adsorption of Dibenzothiophenes on Nanoporous Carbons: Identification of Specific Adsorption Sites Governing Capacity and Selectivity. Energy & Fuels, 2010, 24, 3352-3360.	2.5	82
54	Carbon Quantum Dot Surface-Chemistry-Dependent Ag Release Governs the High Antibacterial Activity of Ag-Metal–Organic Framework Composites. ACS Applied Bio Materials, 2018, 1, 693-707.	2.3	80

#	Article	IF	CITATIONS
55	Porous carbon modified with sulfur in energy related applications. Carbon, 2017, 118, 561-577.	5.4	77
56	Visible-Light-Enhanced Interactions of Hydrogen Sulfide with Composites of Zinc (Oxy)hydroxide with Graphite Oxide and Graphene. Langmuir, 2012, 28, 1337-1346.	1.6	76
57	Enhanced uranium removal from acidic wastewater by phosphonate-functionalized ordered mesoporous silica: Surface chemistry matters the most. Journal of Hazardous Materials, 2021, 413, 125279.	6.5	76
58	Interactions of 4,6-Dimethyldibenzothiophene with the Surface of Activated Carbons. Langmuir, 2009, 25, 9302-9312.	1.6	74
59	Role of sulfur and nitrogen surface groups in adsorption of formaldehyde on nanoporous carbons. Carbon, 2018, 138, 283-291.	5.4	74
60	Additive-free photo-assisted selective partial oxidation at ambient conditions of 5-hydroxymethylfurfural by manganese (IV) oxide nanorods. Applied Catalysis B: Environmental, 2019, 256, 117803.	10.8	74
61	Study of H2S Adsorption and Water Regeneration of Spent Coconut-Based Activated Carbon. Environmental Science & Technology, 2000, 34, 4587-4592.	4.6	72
62	Adsorptive removal of an eight-component volatile organic compound mixture by Cu-, Co-, and Zr-metal-organic frameworks: Experimental and theoretical studies. Chemical Engineering Journal, 2020, 397, 125391.	6.6	72
63	Insight into the mechanism of CO2 adsorption on Cu–BTC and its composites with graphite oxide or aminated graphite oxide. Chemical Engineering Journal, 2014, 239, 399-407.	6.6	71
64	Adsorption/Oxidation of CH3SH on Activated Carbons Containing Nitrogen. Langmuir, 2003, 19, 6115-6121.	1.6	70
65	Layered double hydroxides/biochar composites as adsorbents for water remediation applications: recent trends and perspectives. Journal of Cleaner Production, 2021, 284, 124755.	4.6	68
66	Adsorptive Removal of Thiophenic Compounds from Oils by Activated Carbon Modified with Concentrated Nitric Acid. Energy & amp; Fuels, 2013, 27, 1499-1505.	2.5	67
67	Electrochemical Reduction of Oxygen on Hydrophobic Ultramicroporous PolyHIPE Carbon. ACS Catalysis, 2016, 6, 5618-5628.	5.5	67
68	Desulfurization of digester gas: prediction of activated carbon bed performance at low concentrations of hydrogen sulfide. Catalysis Today, 2005, 99, 329-337.	2.2	65
69	Nanoengineered Electrodes for Biomass-Derived 5-Hydroxymethylfurfural Electrocatalytic Oxidation to 2,5-Furandicarboxylic Acid. ACS Sustainable Chemistry and Engineering, 2021, 9, 1970-1993.	3.2	65
70	Fingerprint imaging using N-doped carbon dots. Carbon, 2019, 144, 791-797.	5.4	64
71	Enhanced reactive adsorption of H ₂ S on Cu–BTC/ S- and N-doped GO composites. Journal of Materials Chemistry A, 2015, 3, 8194-8204.	5.2	63
72	Metal Organic Frameworks as Desulfurization Adsorbents of DBT and 4,6-DMDBT from Fuels. Molecules, 2019, 24, 4525.	1.7	61

#	Article	IF	CITATIONS
73	Investigation of the enhancing effects of sulfur and/or oxygen functional groups of nanoporous carbons on adsorption of dibenzothiophenes. Carbon, 2011, 49, 1216-1224.	5.4	60
74	Manganese oxide and graphite oxide/MnO2 composites as reactive adsorbents of ammonia at ambient conditions. Microporous and Mesoporous Materials, 2012, 150, 55-63.	2.2	60
75	A New Generation of Surface Active Carbon Textiles As Reactive Adsorbents of Indoor Formaldehyde. ACS Applied Materials & Interfaces, 2018, 10, 8066-8076.	4.0	60
76	Aminated graphite oxides and their composites with copper-based metal–organic framework: in search for efficient media for CO2 sequestration. RSC Advances, 2013, 3, 9932.	1.7	59
77	Removal of heavy metals by leaves-derived biosorbents. Environmental Chemistry Letters, 2019, 17, 755-766.	8.3	59
78	Reactive adsorption of mustard gas surrogate on zirconium (hydr)oxide/graphite oxide composites: the role of surface and chemical features. Journal of Materials Chemistry A, 2016, 4, 1008-1019.	5.2	57
79	Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles. Journal of Hazardous Materials, 2013, 246-247, 300-309.	6.5	56
80	Effect of confined space reduction of graphite oxide followed by sulfur doping on oxygen reduction reaction in neutral electrolyte. Journal of Materials Chemistry A, 2013, 1, 7059.	5.2	56
81	Extraction of Metal lons with Metal–Organic Frameworks. Molecules, 2019, 24, 4605.	1.7	56
82	Photoactivity of g ₃ N ₄ /Sâ€Doped Porous Carbon Composite: Synergistic Effect of Composite Formation. ChemSusChem, 2016, 9, 795-799.	3.6	55
83	Insight into the Capacitive Performance of Sulfurâ€Doped Nanoporous Carbons Modified by Addition of Graphene Phase. Electroanalysis, 2014, 26, 109-120.	1.5	54
84	Highly luminescent S-doped carbon dots for the selective detection of ammonia. Carbon, 2017, 114, 544-556.	5.4	54
85	Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors. Chemical Engineering Journal, 2020, 395, 125099.	6.6	54
86	A comprehensive review on selected graphene synthesis methods: from electrochemical exfoliation through rapid thermal annealing towards biomass pyrolysis. Journal of Materials Chemistry C, 2021, 9, 6722-6748.	2.7	54
87	Role of Graphite Oxide (GO) and Polyaniline (PANI) in NO ₂ Reduction on GO-PANI Composites. Industrial & Engineering Chemistry Research, 2007, 46, 6925-6935.	1.8	53
88	Effect of surface chemical and structural heterogeneity of copper-based MOF/graphite oxide composites on the adsorption of ammonia. Journal of Colloid and Interface Science, 2014, 417, 109-114.	5.0	51
89	Zinc peroxide nanoparticles: Surface, chemical and optical properties and the effect of thermal treatment on the detoxification of mustard gas. Applied Catalysis B: Environmental, 2018, 226, 429-440.	10.8	51
90	Effect of Carbon Surface Modification with Dimethylamine on Reactive Adsorption of NO _{<i>x</i>} . Langmuir, 2011, 27, 1837-1843.	1.6	50

#	Article	IF	CITATIONS
91	Zinc (hydr)oxide/graphite based-phase composites: effect of the carbonaceous phase on surface properties and enhancement in electrical conductivity. Journal of Materials Chemistry, 2012, 22, 7970.	6.7	50
92	Sulfurâ€Doped Carbon Aerogel as a Metalâ€Free Oxygen Reduction Catalyst. ChemCatChem, 2015, 7, 2924-2931.	1.8	50
93	Role of Surface Chemistry and Morphology in the Reactive Adsorption of H ₂ S on Iron (Hydr)Oxide/Graphite Oxide Composites. Langmuir, 2015, 31, 2730-2742.	1.6	50
94	Catalytic oxidative desulfurization of a 4,6-DMDBT containing model fuel by metal-free activated carbons: the key role of surface chemistry. Green Chemistry, 2019, 21, 6685-6698.	4.6	49
95	Municipal Sludgeâ~'Industrial Sludge Composite Desulfurization Adsorbents:Â Synergy Enhancing the Catalytic Properties. Environmental Science & Technology, 2006, 40, 3378-3383.	4.6	48
96	Role of Zr ⁴⁺ Cations in NO ₂ Adsorption on Ce _{1-<i>x</i>} Zr _{<i>x</i>} O ₂ Mixed Oxides at Ambient Conditions. Langmuir, 2011, 27, 9379-9386.	1.6	48
97	Importance of carbon surface chemistry in development of iron–carbon composite adsorbents for arsenate removal. Journal of Hazardous Materials, 2011, 186, 667-674.	6.5	48
98	Photocatalytic Platforms for Removal of Ammonia from Gaseous and Aqueous Matrixes: Status and Challenges. ACS Catalysis, 2020, 10, 8683-8716.	5.5	48
99	Pyridine-, thiol- and amine-functionalized mesoporous silicas for adsorptive removal of pharmaceuticals. Microporous and Mesoporous Materials, 2020, 299, 110132.	2.2	48
100	Adsorption/Reduction of NO ₂ on Graphite Oxide/Iron Composites. Industrial & Engineering Chemistry Research, 2009, 48, 10884-10891.	1.8	47
101	Visible light driven photoelectrochemical water splitting on metal free nanoporous carbon promoted by chromophoric functional groups. Carbon, 2014, 79, 432-441.	5.4	47
102	Effect of GO phase in Zn(OH)2/GO composite on the extent of photocatalytic reactive adsorption of mustard gas surrogate. Applied Catalysis B: Environmental, 2016, 183, 37-46.	10.8	47
103	Cobalt (hydr)oxide/graphite oxide composites: Importance of surface chemical heterogeneity for reactive adsorption of hydrogen sulfide. Journal of Colloid and Interface Science, 2012, 378, 1-9.	5.0	45
104	Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons. Advanced Science, 2018, 5, 1800293.	5.6	45
105	Analysis of interactions of mustard gas surrogate vapors with porous carbon textiles. Chemical Engineering Journal, 2019, 362, 758-766.	6.6	45
106	Defectous UiO-66 MOF Nanocomposites as Reactive Media of Superior Protection against Toxic Vapors. ACS Applied Materials & Interfaces, 2020, 12, 14678-14689.	4.0	44
107	Adsorption of ammonia on graphite oxide/aluminium polycation and graphite oxide/zirconium–aluminium polyoxycation composites. Journal of Colloid and Interface Science, 2008, 324, 25-35.	5.0	43
108	Reactive adsorption of hydrogen sulfide on visible light photoactive zinc (hydr)oxide/graphite oxide and zinc (hydr)oxychloride/graphite oxide composites. Applied Catalysis B: Environmental, 2013, 132-133, 321-331.	10.8	43

#	Article	IF	CITATIONS
109	Key role of terminal hydroxyl groups and visible light in the reactive adsorption/catalytic conversion of mustard gas surrogate on zinc (hydr)oxides. Applied Catalysis B: Environmental, 2015, 174-175, 96-104.	10.8	43
110	Visible light enhanced removal of a sulfur mustard gas surrogate from a vapor phase on novel hydrous ferric oxide/graphite oxide composites. Journal of Materials Chemistry A, 2015, 3, 220-231.	5.2	43
111	Mesoporous Graphitic Carbon Nitrideâ€Based Nanospheres as Visibleâ€Light Active Chemical Warfare Agents Decontaminant. ChemNanoMat, 2016, 2, 268-272.	1.5	42
112	Combined Effect of Porosity and Surface Chemistry on the Electrochemical Reduction of Oxygen on Cellular Vitreous Carbon Foam Catalyst. ACS Catalysis, 2017, 7, 7466-7478.	5.5	42
113	Engaging nanoporous carbons in "beyond adsorption―applications: Characterization, challenges and performance. Carbon, 2020, 164, 69-84.	5.4	41
114	Dual Role of Water in the Process of Methyl Mercaptan Adsorption on Activated Carbons. Langmuir, 2002, 18, 8553-8559.	1.6	40
115	Effect of nanoporous carbon surface chemistry on the removal of endocrine disruptors from water phase. Journal of Colloid and Interface Science, 2015, 449, 180-191.	5.0	40
116	Effective impregnation for the preparation of magnetic mesoporous carbon: application to dye adsorption. Journal of Chemical Technology and Biotechnology, 2017, 92, 1899-1911.	1.6	39
117	Degradation of endocrine disruptor, bisphenol-A, on an mixed oxidation state manganese oxide/modified graphite oxide composite: A role of carbonaceous phase. Journal of Colloid and Interface Science, 2019, 539, 516-524.	5.0	39
118	Detoxification of mustard gas surrogate on ZnO2/g-C3N4 composites: Effect of surface features' synergy and day-night photocatalysis. Applied Catalysis B: Environmental, 2020, 272, 119038.	10.8	39
119	Propensity and appraisal of biochar performance in removal of oil spills: A comprehensive review. Environmental Pollution, 2021, 288, 117676.	3.7	39
120	Study of Hydrogen Sulfide Adsorption on Activated Carbons Using Inverse Gas Chromatography at Infinite Dilution. Journal of Physical Chemistry B, 2000, 104, 8841-8847.	1.2	38
121	Wood-Based Activated Carbons as Adsorbents of Hydrogen Sulfide: A Study of Adsorption and Water Regeneration Processes. Industrial & Engineering Chemistry Research, 2000, 39, 3849-3855.	1.8	37
122	Evaluation of GO/MnO2 composites as supercapacitors in neutral electrolytes: role of graphite oxide oxidation level. Journal of Materials Chemistry, 2012, 22, 23525.	6.7	37
123	Barium titanate perovskite nanoparticles as a photoreactive medium for chemical warfare agent detoxification. Journal of Colloid and Interface Science, 2018, 531, 233-244.	5.0	37
124	Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water. Journal of Molecular Liquids, 2021, 342, 117540.	2.3	36
125	Zinc (hydr)oxide/graphite oxide/AuNPs composites: Role of surface features in H2S reactive adsorption. Journal of Colloid and Interface Science, 2014, 436, 296-305.	5.0	35
126	Irreversible water mediated transformation of BCN from a 3D highly porous form to its nonporous hydrolyzed counterpart. Journal of Materials Chemistry A, 2018, 6, 3510-3521.	5.2	35

#	Article	IF	CITATIONS
127	New Cu _x S _y /nanoporous carbon composites as efficient oxygen reduction catalysts in alkaline medium. Journal of Materials Chemistry A, 2014, 2, 20164-20176.	5.2	34
128	Aminated graphitic carbon derived from corn stover biomass as adsorbent against antibiotic tetracycline: Optimizing the physicochemical parameters. Journal of Molecular Liquids, 2020, 313, 113523.	2.3	34
129	When sonochemistry meets heterogeneous photocatalysis: designing a sonophotoreactor towards sustainable selective oxidation. Green Chemistry, 2020, 22, 4896-4905.	4.6	34
130	Effects of surface heterogeneity of cobalt oxyhydroxide/graphite oxide composites on reactive adsorption of hydrogen sulfide. Microporous and Mesoporous Materials, 2015, 204, 8-14.	2.2	32
131	Insight into the Mechanism of Oxygen Reduction Reaction on Micro/Mesoporous Carbons: Ultramicropores versus Nitrogen-Containing Catalytic Centers in Ordered Pore Structure. ACS Applied Energy Materials, 2019, 2, 7412-7424.	2.5	32
132	Zeolitic imidazolate frameworks (ZIFs) of various morphologies against eriochrome black-T (EBT): Optimizing the key physicochemical features by process modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125391.	2.3	32
133	Highly Efficient Air Desulfurization on Self-Assembled Bundles of Copper Hydroxide Nanorods. ACS Applied Materials & Interfaces, 2016, 8, 31986-31994.	4.0	31
134	Evaluation of nitrogen- and sulfur-doped porous carbon textiles as electrode materials for flexible supercapacitors. Electrochimica Acta, 2019, 305, 125-136.	2.6	31
135	Mechanochemical Forces as a Synthetic Tool for Zero- and One-Dimensional Titanium Oxide-Based Nano-photocatalysts. Topics in Current Chemistry, 2020, 378, 2.	3.0	31
136	Novel Approaches Utilizing Metal-Organic Framework Composites for the Extraction of Organic Compounds and Metal Traces from Fish and Seafood. Molecules, 2020, 25, 513.	1.7	31
137	Copper Hydroxyl Nitrate/Graphite Oxide Composite as Superoxidant for the Decomposition/Mineralization of Organophosphateâ€Based Chemical Warfare Agent Surrogate. Advanced Materials Interfaces, 2015, 2, 1500215.	1.9	30
138	Mustard Gas Surrogate Interactions with Modified Porous Carbon Fabrics: Effect of Oxidative Treatment. Langmuir, 2017, 33, 11475-11483.	1.6	30
139	Towards understanding reactive adsorption of small molecule toxic gases on carbonaceous materials. Catalysis Today, 2012, 186, 20-28.	2.2	29
140	Ferrihydrite deposited on cotton textiles as protection media against the chemical warfare agent surrogate (2-chloroethyl ethyl sulfide). Journal of Materials Chemistry A, 2017, 5, 4972-4981.	5.2	29
141	Nitrogen enrichment of S-doped nanoporous carbon by g-C3N4: Insight into photosensitivity enhancement. Carbon, 2016, 107, 895-906.	5.4	28
142	Oxygen Electroreduction on Nanoporous Carbons: Textural Features vs Nitrogen and Boron Catalytic Centers. ChemCatChem, 2019, 11, 851-860.	1.8	28
143	A Novel Nanocomposite of Activated Serpentine Mineral Decorated with Magnetic Nanoparticles for Rapid and Effective Adsorption of Hazardous Cationic Dyes: Kinetics and Equilibrium Studies. Nanomaterials, 2020, 10, 684.	1.9	28
144	Study of carbon microstructure by using inverse gas chromatography. Carbon, 1994, 32, 687-691.	5.4	27

#	Article	IF	CITATIONS
145	Ultramicropore-influenced mechanism of oxygen electroreduction on metal-free carbon catalysts. Journal of Materials Chemistry A, 2019, 7, 27110-27123.	5.2	27
146	Reactive adsorption of CEES on iron oxyhydroxide/(N-)graphite oxide composites under visible light exposure. Journal of Materials Chemistry A, 2015, 3, 17080-17090.	5.2	26
147	Carbon Textiles Modified with Copper-Based Reactive Adsorbents as Efficient Media for Detoxification of Chemical Warfare Agents. ACS Applied Materials & amp; Interfaces, 2017, 9, 26965-26973.	4.0	26
148	Mechanistic insights into acetaminophen removal on cashew nut shell biomass-derived activated carbons. Environmental Science and Pollution Research, 2021, 28, 58969-58982.	2.7	26
149	Comparison of Heavy Metals Removal from Aqueous Solution by Moringa oleifera Leaves and Seeds. Coatings, 2021, 11, 508.	1.2	26
150	Microcalorimetric insight into the analysis of the reactive adsorption of ammonia on Cu-MOF and its composite with graphite oxide. Journal of Materials Chemistry, 2012, 22, 21443.	6.7	25
151	Insight into the role of the oxidized graphite precursor on the properties of copper-based MOF/graphite oxide composites. Microporous and Mesoporous Materials, 2013, 179, 205-211.	2.2	25
152	Analysis of factors affecting visible and UV enhanced oxidation of dibenzothiophenes on sulfur-doped activated carbons. Carbon, 2013, 62, 356-364.	5.4	25
153	Mixed CuFe and ZnFe (hydr)oxides as reactive adsorbents of chemical warfare agent surrogates. Journal of Hazardous Materials, 2017, 329, 141-149.	6.5	25
154	Polyoxometalate hybrid catalyst for detection and photodecomposition of mustard gas surrogate vapors. Applied Surface Science, 2019, 467-468, 428-438.	3.1	25
155	Effect of Visibleâ€Light Exposure and Electrolyte Oxygen Content on the Capacitance of Sulfurâ€Doped Carbon. ChemElectroChem, 2014, 1, 565-572.	1.7	24
156	Removal of hydrogen sulfide at ambient conditions on cadmium/GO-based composite adsorbents. Journal of Colloid and Interface Science, 2015, 448, 573-581.	5.0	24
157	Nitrogen-containing activated carbon of improved electrochemical performance derived from cotton stalks using indirect chemical activation. Journal of Colloid and Interface Science, 2019, 540, 285-294.	5.0	24
158	Metal-organic and Zeolitic imidazole frameworks as cationic dye adsorbents: physicochemical optimizations by parametric modeling and kinetic studies. Journal of Molecular Liquids, 2021, 332, 115832.	2.3	24
159	Silicaâ~'Polyamine-Based Carbon Composite Adsorbents as Media for Effective Hydrogen Sulfide Adsorption/Oxidation. Chemistry of Materials, 2007, 19, 2500-2511.	3.2	23
160	Interactions of NO ₂ with Zinc (Hydr)oxide/Graphene Phase Composites: Visible Light Enhanced Surface Reactivity. Journal of Physical Chemistry C, 2012, 116, 2527-2535.	1.5	23
161	Effect of the graphene phase presence in nanoporous S-doped carbon on photoactivity in UV and visible light. Applied Catalysis B: Environmental, 2014, 147, 842-850.	10.8	23
162	Effect of Ag containing (nano)particles on reactive adsorption of mustard gas surrogate on iron oxyhydroxide/graphite oxide composites under visible light irradiation. Chemical Engineering Journal, 2016, 303, 123-136.	6.6	23

#	Article	IF	CITATIONS
163	Composite porous carbon textile with deposited barium titanate nanospheres as wearable protection medium against toxic vapors. Chemical Engineering Journal, 2020, 384, 123280.	6.6	23
164	FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15, 279-287.	2.3	23
165	Boosting the Photoactivity of Grafted Titania: Ultrasoundâ€Driven Synthesis of a Multiâ€Phase Heterogeneous Nanoâ€Architected Photocatalyst. Advanced Functional Materials, 2021, 31, .	7.8	23
166	Nanoporous Carbons: Looking Beyond Their Perception as Adsorbents, Catalyst Supports and Supercapacitors. Chemical Record, 2016, 16, 205-218.	2.9	22
167	Role of Heteroatoms in S,Nâ€Codoped Nanoporous Carbon Materials in CO ₂ (Photo)electrochemical Reduction. ChemSusChem, 2018, 11, 2987-2999.	3.6	22
168	Experimental and Theoretical Studies of Methyl Orange Uptake by Mn–Rich Synthetic Mica: Insights into Manganese Role in Adsorption and Selectivity. Nanomaterials, 2020, 10, 1464.	1.9	22
169	Impregnation of activated carbon by iron oxyhydroxide and its effect on arsenate removal. Journal of Chemical Technology and Biotechnology, 2013, 88, 1058-1066.	1.6	21
170	Exfoliated Clay Decorated with Magnetic Iron Nanoparticles for Crystal Violet Adsorption: Modeling and Physicochemical Interpretation. Nanomaterials, 2020, 10, 1454.	1.9	21
171	Carbonaceous material obtained from bark biomass as adsorbent of phenolic compounds from aqueous solutions. Journal of Environmental Chemical Engineering, 2020, 8, 103784.	3.3	21
172	Biomass-derived porous aminated graphitic nanosheets for removal of the pharmaceutical metronidazole: Optimization of physicochemical features and exploration of process mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125791.	2.3	21
173	Activated Porous Carbon Derived from Tea and Plane Tree Leaves Biomass for the Removal of Pharmaceutical Compounds from Wastewaters. Antibiotics, 2021, 10, 65.	1.5	21
174	Reactive adsorption of penicillin on activated carbons. Adsorption, 2011, 17, 421-429.	1.4	20
175	Proposing an unbiased oxygen reduction reaction onset potential determination by using a Savitzky-Golay differentiation procedure. Journal of Colloid and Interface Science, 2021, 586, 597-600.	5.0	20
176	The effect of ZnFe2O4/activated carbon adsorbent photocatalytic activity on gas-phase desulfurization. Chemical Engineering Journal, 2021, 423, 130255.	6.6	20
177	A novel multifunctional adsorbent of pomegranate peel extract and activated anthracite for Mn(VII) and Cr(VI) uptake from solutions: Experiments and theoretical treatment. Journal of Molecular Liquids, 2020, 311, 113169.	2.3	20
178	Heterogeneity of adsorption energy of water, methanol and diethyl ether on activated carbons: effect of porosity and surface chemistry. Physical Chemistry Chemical Physics, 2003, 5, 2096.	1.3	19
179	Moisture insensitive adsorption of ammonia on resorcinol-formaldehyde resins. Journal of Hazardous Materials, 2016, 305, 96-104.	6.5	18
180	Chemically heterogeneous carbon dots enhanced cholesterol detection by MALDI TOF mass spectrometry. Journal of Colloid and Interface Science, 2021, 591, 373-383.	5.0	18

#	Article	IF	CITATIONS
181	Activated Carbons for Arsenic Removal from Natural Waters and Wastewaters: A Review. Water (Switzerland), 2021, 13, 2982.	1.2	18
182	Interactions of water, methanol and diethyl ether molecules with the surface of oxidized activated carbon. Molecular Physics, 2002, 100, 2041-2048.	0.8	17
183	Effect of increased basicity of activated carbon surface on valeric acid adsorption from aqueous solution activated carbon. Physical Chemistry Chemical Physics, 2003, 5, 4892.	1.3	17
184	Structural and optical characterization of Zn(OH)_2and its composites with graphite oxides. Optics Letters, 2013, 38, 962.	1.7	17
185	Photosensitivity of g-C ₃ N ₄ /S-doped carbon composites: study of surface stability upon exposure to CO ₂ and/or water in ambient light. Journal of Materials Chemistry A, 2017, 5, 24880-24891.	5.2	17
186	Detoxification of Chemical Warfare Agents. , 2018, , .		17
187	Design and development of TiO2 coated microflow reactor for photocatalytic partial oxidation of benzyl alcohol. Molecular Catalysis, 2020, 486, 110884.	1.0	17
188	Activated biochars derived from wood biomass liquefaction residues for effective removal of hazardous hexavalent chromium from aquatic environments. GCB Bioenergy, 2021, 13, 1247-1259.	2.5	17
189	Scrolled titanate nanosheet composites with reduced graphite oxide for photocatalytic and adsorptive removal of toxic vapors. Chemical Engineering Journal, 2021, 415, 128907.	6.6	17
190	Vanadium oxide nanoparticles for methylene blue water remediation: Exploring the effect of physicochemical parameters by process modeling. Journal of Molecular Liquids, 2020, 318, 114046.	2.3	16
191	Application of Fusarium sp. immobilized on multi-walled carbon nanotubes for solid-phase extraction and trace analysis of heavy metal cations. Food Chemistry, 2020, 322, 126757.	4.2	16
192	Tailoring Surface Chemistry of Sugar-Derived Ordered Mesoporous Carbons towards Efficient Removal of Diclofenac from Aquatic Environments. Materials, 2020, 13, 1625.	1.3	16
193	Effect of the Incorporation of Functionalized Cellulose Nanocrystals into UiOâ€66 on Composite Porosity and Surface Heterogeneity Alterations. Advanced Materials Interfaces, 2020, 7, 1902098.	1.9	15
194	Mixed metal oxides derived from layered double hydroxide as catalysts for biodiesel production. Applied Catalysis A: General, 2022, 630, 118470.	2.2	15
195	Harnessing Adsorption–Catalysis Synergy: Efficient Oxidative Removal of Gaseous Formaldehyde by a Manganese Dioxide/Metal–Organic Framework Nanocomposite at Room Temperature. Advanced Functional Materials, 2022, 32, .	7.8	15
196	Building MOF Nanocomposites with Oxidized Graphitic Carbon Nitride Nanospheres: The Effect of Framework Geometry on the Structural Heterogeneity. Molecules, 2019, 24, 4529.	1.7	14
197	Exploring the Silent Aspect of Carbon Nanopores. Nanomaterials, 2021, 11, 407.	1.9	13
198	Alternative view of oxygen reduction on porous carbon electrocatalysts: The substance of complex oxygen-surface interactions. IScience, 2021, 24, 102216.	1.9	13

#	Article	IF	CITATIONS
199	Role of catalyst supports in biocatalysis. Journal of Chemical Technology and Biotechnology, 2023, 98, 7-21.	1.6	13
200	Involvement of water and visible light in the enhancement in SO2 adsorption at ambient conditions on the surface of zinc (hydr)oxide/graphite oxide composites. Chemical Engineering Journal, 2013, 223, 442-453.	6.6	12
201	Catalytic Neutralization of Water Pollutants Mediated by Dendritic Polymers. Nanomaterials, 2022, 12, 445.	1.9	12
202	Deep desulfurization of model fuels by metal-free activated carbons: The impact of surface oxidation and antagonistic effects by mono- and poly-aromatics. Journal of Molecular Liquids, 2022, 351, 118661.	2.3	12
203	Carbon-Based Nanocatalysts (CnCs) for Biomass Valorization and Hazardous Organics Remediation. Nanomaterials, 2022, 12, 1679.	1.9	12
204	Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide. Applied Surface Science, 2016, 390, 735-743.	3.1	11
205	Empowering carbon materials robust gas desulfurization capability through an inclusion of active inorganic phases: A review of recent approaches. Journal of Hazardous Materials, 2022, 437, 129414.	6.5	11
206	Peculiar Properties of Mesoporous Synthetic Carbon/Graphene Phase Composites and their Effect on Supercapacitive Performance. ChemSusChem, 2015, 8, 1955-1965.	3.6	10
207	Removal of dibenzothiophenes from model diesel fuel on sulfur rich activated carbons. Applied Catalysis B: Environmental, 2011, , .	10.8	9
208	Band gap energies of solar micro/meso-porous composites of zinc (hydr)oxide with graphite oxides. Journal of Applied Physics, 2013, 114, 043522.	1.1	9
209	Coupling electrocoagulation and solar photocatalysis for electro- and photo-catalytic removal of carmoisine by Ag/graphitic carbon nitride: Optimization by process modeling and kinetic studies. Journal of Molecular Liquids, 2021, 340, 116917.	2.3	9
210	Regeneration strategies for metal–organic frameworks post acidic gas capture. Coordination Chemistry Reviews, 2022, 467, 214629.	9.5	9
211	Carbon phase-graphite oxide composites based on solid state interactions between the components: Importance of surface chemistry and microstructure. Carbon, 2015, 95, 580-588.	5.4	8
212	TiO2/S-Doped Carbons Hybrids: Analysis of Their Interfacial and Surface Features. Molecules, 2019, 24, 3585.	1.7	8
213	Pyrolyzed biosolid surface features promote a highly efficient oxygen reduction reaction. Green Chemistry, 2020, 22, 7858-7870.	4.6	8
214	Carbonaceous Adsorbents Derived from Agricultural Sources for the Removal of Pramipexole Pharmaceutical Model Compound from Synthetic Aqueous Solutions. Processes, 2021, 9, 253.	1.3	8
215	Defluoridationof drinking water by metal impregnated multi-layer green graphene fabricated from trees pruning waste. Environmental Science and Pollution Research, 2021, 28, 18201-18215.	2.7	8
216	Copper-Modified Activated Carbons as Adsorbents of NO under Ambient Conditions. Adsorption Science and Technology, 2011, 29, 831-845.	1.5	7

#	Article	IF	CITATIONS
217	Self-organized nanostructured materials of alkylated phthalocyanines and underivatized C60 on ITO. RSC Advances, 2013, 3, 21360.	1.7	7
218	Surface interactions of oxytetracycline on municipal solid waste-derived biochar–montmorillonite composite. Sustainable Environment, 2022, 8, .	1.2	6
219	The Role of Carbon on Copper–Carbon Composites for the Electrooxidation of Alcohols in an Alkaline Medium. Journal of Carbon Research, 2017, 3, 36.	1.4	5
220	Efficient Air Desulfurization Catalysts Derived from Pig Manure Liquefaction Char. Journal of Carbon Research, 2017, 3, 37.	1.4	5
221	Ultrasound-assisted decoration of CuOx nanoclusters on TiO2 nanoparticles for additives free photocatalytic hydrogen production and biomass valorization by selective oxidation. Molecular Catalysis, 2021, 514, 111664.	1.0	5
222	A Novel Combined Treatment Process of Hybrid Biosorbent–Nanofiltration for Effective Pb(II) Removal from Wastewater. Water (Switzerland), 2021, 13, 3316.	1.2	5
223	Dynamic/column tests for dibenzothiophene (DBT) removal using chemically functionalized carbons: Exploring the effect of physicochemical features and breakthrough modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128597.	2.3	5
224	Graphite Oxide Nanocomposites for Air Stream Desulfurization. , 2019, , 1-24.		4
225	Pitahaya Fruit (Hylocereus spp.) Peels Evaluation for Removal of Pb(II), Cd(II), Co(II), and Ni(II) from the Waters. Sustainability, 2022, 14, 1685.	1.6	4
226	High-frequency sonication for the synthesis of nanocluster-decorated titania nanorods: Making a better photocatalyst for the selective oxidation of monoaromatic alcohol. Catalysis Communications, 2022, 163, 106406.	1.6	4
227	Biochemical changes in cancer cells induced by photoactive nanosystem based on carbon dots loaded with Ru-complex. Chemico-Biological Interactions, 2022, 360, 109950.	1.7	4
228	Predictions of H2S Breakthrough Capacity of Activated Carbons at Low Concentrations of Hydrogen Sulfide. Adsorption, 2005, 11, 461-466.	1.4	3
229	Hybrid solar cells of micro/mesoporous Zn(OH)2 and its graphite composites sensitized by CdSe quantum dots. Journal of Photonics for Energy, 2014, 4, 043098.	0.8	3
230	Innovative aspects of environmental chemistry and technology regarding air, water, and soil pollution. Environmental Science and Pollution Research, 2021, 28, 58958-58968.	2.7	3
231	Leaf Biosorbents for the Removal of Heavy Metals. Environmental Chemistry for A Sustainable World, 2018, , 87-126.	0.3	2
232	Arsenazo III removal from diagnostic laboratories wastewater by effective adsorption onto thermochemically modified ordered mesoporous carbon. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100607.	1.7	2
233	Sol-gel–derived silica xerogels: Synthesis, properties, and their applicability for removal of hazardous pollutants. , 2022, , 261-277.		2
234	Utilization of Third-Stage Waste from a Rice Production for Removal of H ₂ S, NO ₂ and SO ₂ from Air. Adsorption Science and Technology, 2013, 31, 199-212.	1.5	1

#	Article	lF	CITATIONS
235	Time-resolved fluorescence and ultrafast energy transfer in a zinc (hydr)oxide–graphite oxide mesoporous composite. Journal of Photonics for Energy, 2015, 5, 053084.	0.8	1
236	New Approaches in the Detoxification of CWAs. , 2018, , 37-123.		1
237	Green photosensitisers for the degradation of selected pesticides of high risk in most susceptible food: A safer approach. PLoS ONE, 2021, 16, e0258864.	1.1	1
238	Path Towards Future Research. , 2018, , 125-144.		0
239	Chemical Warfare Agents (CWAs). , 2018, , 1-3.		0
240	Homogeneous photocatalysts immobilized on polymeric supports: Environmental and chemical synthesis applications. , 2021, , 575-588.		0
241	Current Protection Against CWAs. , 2018, , 33-36.		0