Xueqiang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4768507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. New Phytologist, 2020, 225, 1667-1680.	7.3	43
2	Dissection of Pleiotropic QTL Regions Controlling Wheat Spike Characteristics Under Different Nitrogen Treatments Using Traditional and Conditional QTL Mapping. Frontiers in Plant Science, 2019, 10, 187.	3.6	56
3	Reducing expression of a nitrateâ€responsive <scp>bZIP</scp> transcription factor increases grain yield and N use in wheat. Plant Biotechnology Journal, 2019, 17, 1823-1833.	8.3	48
4	A wheat/rye polymorphism affects seminal root length and yield across different irrigation regimes. Journal of Experimental Botany, 2019, 70, 4027-4037.	4.8	27
5	Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnology Journal, 2018, 16, 1858-1867.	8.3	101
6	QTL Detection for Kernel Size and Weight in Bread Wheat (Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map. Frontiers in Plant Science, 2018, 9, 1484.	3.6	78
7	Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theoretical and Applied Genetics, 2017, 130, 1235-1252.	3.6	68
8	The Auxin Biosynthetic <i>TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A</i> Increases Grain Yield of Wheat. Plant Physiology, 2017, 174, 2274-2288.	4.8	81
9	Characterization of QTLs for Root Traits of Wheat Grown under Different Nitrogen and Phosphorus Supply Levels. Frontiers in Plant Science, 2017, 8, 2096.	3.6	50
10	Knock out of the PHOSPHATE 2 Gene TaPHO2-A1 Improves Phosphorus Uptake and Grain Yield under Low Phosphorus Conditions in Common Wheat. Scientific Reports, 2016, 6, 29850.	3.3	50
11	QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress. Theoretical and Applied Genetics, 2016, 129, 469-484.	3.6	100
12	The nitrate inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiology, 2015, 169, pp.00568.2015.	4.8	146
13	QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Molecular Breeding, 2015, 35, 1.	2.1	91
14	A Wheat CCAAT Box-Binding Transcription Factor Increases the Grain Yield of Wheat with Less Fertilizer Input. Plant Physiology, 2015, 167, 411-423.	4.8	162
15	Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat. Molecular Breeding, 2014, 33, 975-985.	2.1	31
16	Auxin biosynthetic gene <i><scp>TAR</scp>2</i> is involved in low nitrogenâ€mediated reprogramming of root architecture in <scp>A</scp> rabidopsis. Plant Journal, 2014, 78, 70-79.	5.7	193
17	A genotypic difference in primary root length is associated with the inhibitory role of transforming growth factorâ€beta receptorâ€interacting proteinâ€1 on root meristem size in wheat. Plant Journal, 2014, 77, 931-943.	5.7	33
18	A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat. Annals of Botany, 2013, 111, 1139-1153.	2.9	139

XUEQIANG ZHAO

#	Article	IF	CITATIONS
19	Major quantitative trait loci for seminal root morphology of wheat seedlings. Molecular Breeding, 2012, 30, 139-148.	2.1	123
20	Functional characterization of the trans-membrane domain interactions of the Sec61 protein translocation complex beta-subunit. BMC Cell Biology, 2009, 10, 76.	3.0	18
21	Use of Bimolecular Fluorescence Complementation in Yeast Saccharomyces cerevisiae. Methods in Molecular Biology, 2008, 457, 165-175.	0.9	11
22	The Transmembrane Domain Is Sufficient for Sbh1p Function, Its Association with the Sec61 Complex, and Interaction with Rtn1p. Journal of Biological Chemistry, 2007, 282, 30618-30628.	3.4	21