Xueqiang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4768507/publications.pdf

Version: 2024-02-01

22 1,678 19 22
papers citations h-index g-index

26 26 26 1789 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Auxin biosynthetic gene <i><scp>TAR</scp>2</i> is involved in low nitrogenâ€mediated reprogramming of root architecture in <scp>A</scp> rabidopsis. Plant Journal, 2014, 78, 70-79.	5.7	193
2	A Wheat CCAAT Box-Binding Transcription Factor Increases the Grain Yield of Wheat with Less Fertilizer Input. Plant Physiology, 2015, 167 , 411 - 423 .	4.8	162
3	The nitrate inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiology, 2015, 169, pp.00568.2015.	4.8	146
4	A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat. Annals of Botany, 2013, 111, 1139-1153.	2.9	139
5	Major quantitative trait loci for seminal root morphology of wheat seedlings. Molecular Breeding, 2012, 30, 139-148.	2.1	123
6	Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnology Journal, 2018, 16, 1858-1867.	8.3	101
7	QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress. Theoretical and Applied Genetics, 2016, 129, 469-484.	3.6	100
8	QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Molecular Breeding, 2015, 35, 1.	2.1	91
9	The Auxin Biosynthetic <i>TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A</i> Increases Grain Yield of Wheat. Plant Physiology, 2017, 174, 2274-2288.	4.8	81
10	QTL Detection for Kernel Size and Weight in Bread Wheat (Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map. Frontiers in Plant Science, 2018, 9, 1484.	3.6	78
11	Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theoretical and Applied Genetics, 2017, 130, 1235-1252.	3.6	68
12	Dissection of Pleiotropic QTL Regions Controlling Wheat Spike Characteristics Under Different Nitrogen Treatments Using Traditional and Conditional QTL Mapping. Frontiers in Plant Science, 2019, 10, 187.	3.6	56
13	Knock out of the PHOSPHATE 2 Gene TaPHO2-A1 Improves Phosphorus Uptake and Grain Yield under Low Phosphorus Conditions in Common Wheat. Scientific Reports, 2016, 6, 29850.	3.3	50
14	Characterization of QTLs for Root Traits of Wheat Grown under Different Nitrogen and Phosphorus Supply Levels. Frontiers in Plant Science, 2017, 8, 2096.	3.6	50
15	Reducing expression of a nitrateâ€responsive <scp>bZIP</scp> transcription factor increases grain yield and N use in wheat. Plant Biotechnology Journal, 2019, 17, 1823-1833.	8.3	48
16	A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. New Phytologist, 2020, 225, 1667-1680.	7.3	43
17	A genotypic difference in primary root length is associated with the inhibitory role of transforming growth factorâ€beta receptorâ€interacting proteinâ€1 on root meristem size in wheat. Plant Journal, 2014, 77, 931-943.	5.7	33
18	Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat. Molecular Breeding, 2014, 33, 975-985.	2.1	31

#	Article	lF	CITATION
19	A wheat/rye polymorphism affects seminal root length and yield across different irrigation regimes. Journal of Experimental Botany, 2019, 70, 4027-4037.	4.8	27
20	The Transmembrane Domain Is Sufficient for Sbh1p Function, Its Association with the Sec61 Complex, and Interaction with Rtn1p. Journal of Biological Chemistry, 2007, 282, 30618-30628.	3.4	21
21	Functional characterization of the trans-membrane domain interactions of the Sec61 protein translocation complex beta-subunit. BMC Cell Biology, 2009, 10, 76.	3.0	18
22	Use of Bimolecular Fluorescence Complementation in Yeast Saccharomyces cerevisiae. Methods in Molecular Biology, 2008, 457, 165-175.	0.9	11