Sanchita Bhadra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4768274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved Bst DNA Polymerase Variants Derived <i>via</i> a Machine Learning Approach. Biochemistry, 2023, 62, 410-418.	1.2	20
2	Preparation and Use of Cellular Reagents: A Lowâ€resource Molecular Biology Reagent Platform. Current Protocols, 2022, 2, e387.	1.3	4
3	Charge Engineering Improves the Performance of Bst DNA Polymerase Fusions. ACS Synthetic Biology, 2022, 11, 1488-1496.	1.9	14
4	Developing predictive hybridization models for phosphorothioate oligonucleotides using high-resolution melting. PLoS ONE, 2022, 17, e0268575.	1.1	1
5	High-Surety Isothermal Amplification and Detection of SARS-CoV-2. MSphere, 2021, 6, .	1.3	52
6	Minimizing Leakage in Stacked Strand Exchange Amplification Circuits. ACS Synthetic Biology, 2021, 10, 1277-1283.	1.9	3
7	Producing molecular biology reagents without purification. PLoS ONE, 2021, 16, e0252507.	1.1	9
8	One-Enzyme Reverse Transcription qPCR Using Taq DNA Polymerase. Biochemistry, 2020, 59, 4638-4645.	1.2	20
9	Dynamic Programming of a DNA Walker Controlled by Protons. ACS Nano, 2020, 14, 4007-4013.	7.3	78
10	Strand Displacement Probes Combined with Isothermal Nucleic Acid Amplification for Instrument-Free Detection from Complex Samples. Analytical Chemistry, 2018, 90, 6580-6586.	3.2	86
11	Portable platform for rapid in-field identification of human fecal pollution in water. Water Research, 2018, 131, 186-195.	5.3	37
12	Simultaneous Detection of Different Zika Virus Lineages via Molecular Computation in a Point-of-Care Assay. Viruses, 2018, 10, 714.	1.5	13
13	Direct nucleic acid analysis of mosquitoes for high fidelity species identification and detection of Wolbachia using a cellphone. PLoS Neglected Tropical Diseases, 2018, 12, e0006671.	1.3	24
14	Phosphorothioated Primers Lead to Loop-Mediated Isothermal Amplification at Low Temperatures. Analytical Chemistry, 2018, 90, 8290-8294.	3.2	73
15	Cellular reagents for diagnostics and synthetic biology. PLoS ONE, 2018, 13, e0201681.	1.1	17
16	Amplicon Competition Enables Endâ€Point Quantitation of Nucleic Acids Following Isothermal Amplification. ChemBioChem, 2017, 18, 1692-1695.	1.3	16
17	Strand-Exchange Nucleic Acid Circuitry with Enhanced Thermo-and Structure- Buffering Abilities Turns Gene Diagnostics Ultra-Reliable and Environmental Compatible. Scientific Reports, 2016, 6, 36605.	1.6	16
18	Real-Time Sequence-Validated Loop-Mediated Isothermal Amplification Assays for Detection of Middle East Respiratory Syndrome Coronavirus (MERS-CoV). PLoS ONE, 2015, 10, e0123126.	1.1	122

SANCHITA BHADRA

#	Article	IF	CITATIONS
19	Design, Synthesis, and Application of Spinach Molecular Beacons Triggered by Strand Displacement. Methods in Enzymology, 2015, 550, 215-249.	0.4	8
20	A Sweet Spot for Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange Circuits to Glucometers. Scientific Reports, 2015, 5, 11039.	1.6	66
21	Robust Strand Exchange Reactions for the Sequence-Specific, Real-Time Detection of Nucleic Acid Amplicons. Analytical Chemistry, 2015, 87, 3314-3320.	3.2	128
22	Mismatches Improve the Performance of Strandâ€Displacement Nucleic Acid Circuits. Angewandte Chemie - International Edition, 2014, 53, 1845-1848.	7.2	164
23	Design and application of cotranscriptional non-enzymatic RNA circuits and signal transducers. Nucleic Acids Research, 2014, 42, e58-e58.	6.5	71
24	Exquisite allele discrimination by toehold hairpin primers. Nucleic Acids Research, 2014, 42, e120-e120.	6.5	8
25	G-quadruplex-generating polymerase chain reaction for visual colorimetric detection of amplicons. Analytical Biochemistry, 2014, 445, 38-40.	1.1	45
26	A Spinach molecular beacon triggered by strand displacement. Rna, 2014, 20, 1183-1194.	1.6	54
27	Real-Time Detection of Isothermal Amplification Reactions with Thermostable Catalytic Hairpin Assembly. Journal of the American Chemical Society, 2013, 135, 7430-7433.	6.6	243
28	Ribozymes as Molecular Biology Reagents. , 2012, , 293-312.		0
29	Transduction of Oncogenes. , 2011, , 3754-3757.		0
30	Endogenous Retroviruses and Cancer. , 2010, , 119-162.		1
31	BALB/Mtv-Null Mice Responding to Strong Mouse Mammary Tumor Virus Superantigens Restrict Mammary Tumorigenesis. Journal of Virology, 2009, 83, 484-488.	1.5	8
32	Transduction of Oncogenes. , 2008, , 3029-3032.		0
33	Endogenous MMTV Proviruses Induce Susceptibility to Both Viral and Bacterial Pathogens. PLoS Pathogens, 2006, 2, e128.	2.1	21
34	Conversion of Mouse Mammary Tumor Virus to a Lymphomagenic Virus. Journal of Virology, 2005, 79, 12592-12596.	1.5	22
35	The Type B Leukemogenic Virus Truncated Superantigen Is Dispensable for T-Cell Lymphomagenesis. Journal of Virology, 2003, 77, 3866-3870.	1.5	27