Andrzej Jeżowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4768080/publications.pdf

Version: 2024-02-01

192 papers 1,857 citations

20 h-index 33 g-index

196 all docs

196 docs citations

196 times ranked 1486 citing authors

#	Article	IF	CITATIONS
1	Experimental setup for thermal conductivity investigation of amorphous materials. Cryogenics, 2022, 121, 103394.	1.7	O
2	Calorimetric, NEXAFS and XPS studies of MWCNTs with low defectiveness. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 331-336.	2.1	9
3	Heat capacity anomalies of the molecular crystal 1-fluoro-adamantane at low temperatures. Scientific Reports, 2021, 11, 18640.	3.3	8
4	Size effects in the heat capacity of modified MWCNTs. Thermal Science and Engineering Progress, 2021, 26, 101097.	2.7	5
5	Anisotropic thermal conductivity of AlGaN/GaN superlattices. Nanotechnology, 2021, 32, 075707.	2.6	8
6	High-temperature power factor of half-Heusler phases RENiSb (REÂ= Sc, Dy, Ho, Er, Tm, Lu). Journal of Alloys and Compounds, 2020, 816, 152596.	5.5	27
7	Thermal conductivity of thin films of gallium nitride, doped with aluminium, measured with 3ω method. Solid State Sciences, 2020, 101, 106105.	3.2	10
8	Preparation and physical characteristics of graphene ceramics. Scientific Reports, 2020, 10, 11121.	3.3	13
9	Heat transport in methane-palladium nanocomposites. Low Temperature Physics, 2020, 46, 173-176.	0.6	О
10	The low-temperature specific heat of thermal reduced graphene oxide. Low Temperature Physics, 2020, 46, 301-305.	0.6	8
11	Thermoactivated heat transfer mechanism in molecular crystals: Thermal conductivity of benzophenone single crystals. AIP Advances, 2019, 9, 015121.	1.3	6
12	Anomalous behavior of thermal conductivity at high temperatures for molecular crystals composed of flexible molecules. Journal of Physics and Chemistry of Solids, 2019, 127, 151-157.	4.0	6
13	Thermoelectric Properties of Semimetal and Semiconductor Bi1 –xSbx Foils and Wires. Semiconductors, 2019, 53, 657-661.	0.5	2
14	Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite. Low Temperature Physics, 2019, 45, 249-253.	0.6	0
15	The thermal diffusivity of molecular cryocrystals. Low Temperature Physics, 2019, 45, 343-346.	0.6	O
16	The low-temperature specific heat of MWCNTs. Low Temperature Physics, 2019, 45, 347-354.	0.6	15
17	Heat capacity of molecular solids: The special case of cryocrystals. Low Temperature Physics, 2019, 45, 1290-1295.	0.6	7
18	Glassy anomalies in the heat capacity of an ordered 2-bromobenzophenone single crystal. Physical Review B, 2018, 97, .	3.2	19

#	Article	IF	CITATIONS
19	Thermoelectric figure of merit of semimetal and semiconductor Bil–xSbx alloy foils. Low Temperature Physics, 2018, 44, 780-785.	0.6	0
20	Heat Capacity of 1D Molecular Chains. Journal of Low Temperature Physics, 2017, 187, 113-123.	1.4	10
21	The influence of silica nano-inclusions on the structure of methane crystal observed in thermal conductivity experiment. International Journal of Heat and Mass Transfer, 2017, 112, 913-917.	4.8	3
22	Effect of temperature on optical properties and thermal conductivity of vanadate crystals doped with thulium and erbium. Journal of Alloys and Compounds, 2017, 710, 491-500.	5.5	1
23	Design of Yb ³⁺ optical bandwidths by crystallographic modification of disordered calcium niobium gallium laser garnets. Journal of Materials Chemistry C, 2017, 5, 11481-11495.	5.5	26
24	Glassy Anomalies in the Low-Temperature Thermal Properties of a Minimally Disordered Crystalline Solid. Physical Review Letters, 2017, 119, 215506.	7.8	28
25	Thermal conductivity of argon-SiO2cryocrystal nanocomposite. Low Temperature Physics, 2016, 42, 313-316.	0.6	2
26	Investigation of intrinsic and extrinsic defects in solid solution Gd3(Al,Ga)5O12 crystals grown by the Czochralski method. Journal of Alloys and Compounds, 2016, 688, 96-103.	5.5	12
27	New thermal conductivity mechanism in triclinic 4-bromobenzophenone crystal. Chemical Physics Letters, 2016, 647, 55-58.	2.6	9
28	Na Modification of Lanthanide Doped Ca _{3.5} O ₁₂ -Type Laser Garnets: Czochralski Crystal Growth and Design, 2016, 16, 1480-1491.	3.0	29
29	Influence of thermal treatment on thermal properties of adamantane derivatives. Low Temperature Physics, 2015, 41, 469-472.	0.6	11
30	Heat transfer in Ar and N2doped solid CO. Low Temperature Physics, 2015, 41, 435-438.	0.6	0
31	Thermal conductivity of donor-doped GaN measured with 3ï‰ and stationary methods. Low Temperature Physics, 2015, 41, 563-566.	0.6	3
32	Investigations of thermal conductivity of simple van der Waals crystal-based nanocomposites. Low Temperature Physics, 2015, 41, 492-494.	0.6	2
33	Thermal conductivity of heavily doped bulk crystals GaN:O. Free carriers contribution. Materials Research Express, 2015, 2, 085902.	1.6	29
34	Glassy Dynamics versus Thermodynamics: The Case of 2-Adamantanone. Journal of Physical Chemistry B, 2015, 119, 8468-8474.	2.6	22
35	Effects of site-occupation disorder on the low-temperature thermal conductivity of molecular crystals. Journal of Non-Crystalline Solids, 2015, 407, 141-148.	3.1	12
36	A universal T2 behavior of low temperature thermal conductivity of some simple molecular polycrystals. Physica B: Condensed Matter, 2015, 459, 93-96.	2.7	4

#	Article	IF	Citations
37	The influence of ferroelastic domain formation on thermal conductivity in Li2TiGeO5 ceramics. Journal of Thermal Analysis and Calorimetry, 2014, 115, 467-470.	3.6	2
38	Dissipation of phonons by subsystem of disordered molecules – Case of thermal conductivity of carbon monoxide crystal. Solid State Communications, 2014, 197, 6-10.	1.9	5
39	Polymorphism of 2-Adamantanone. Crystal Growth and Design, 2014, 14, 2626-2632.	3.0	26
40	Thermal conductivity at the amorphous-nanocrystalline phase transition in beech wood biocarbon. Physics of the Solid State, 2014, 56, 1071-1080.	0.6	4
41	Thermal properties of Er:Li2TiGeO5 ferroelastic ceramics. Ceramics International, 2014, 40, 8027-8031.	4.8	0
42	Heat capacity of Bio-SiC and SiC/Si ecoceramics prepared from white eucalyptus, beech, and sapele tree wood. Physics of the Solid State, 2013, 55, 454-460.	0.6	2
43	Thermal conductivity and electrical resistivity of bulk indium and indium embedded in 7-nm channels of porous borosilicate glass. Physics of the Solid State, 2013, 55, 1779-1785.	0.6	2
44	Application of the Callaway theory to analysis of thermal transport by phonons in ceramic and biomorphic composites. Solid State Communications, 2013, 168, 52-55.	1.9	0
45	Thermopower of Bio-SiC and SiC/Si ecoceramics prepared from sapele tree wood. Physics of the Solid State, 2013, 55, 54-59.	0.6	2
46	Thermal conductivity of solid ammonia at low temperatures. Physica Status Solidi (B): Basic Research, 2013, 250, 1870-1873.	1.5	3
47	Evidence of the ferroelastic phase transition in Na2TiGeO5ceramics. Phase Transitions, 2013, 86, 301-305.	1.3	3
48	Thermal Characterization, Crystal Field Analysis and In-Band Pumped Laser Performance of Er Doped NaY(WO4)2 Disordered Laser Crystals. PLoS ONE, 2013, 8, e59381.	2.5	9
49	Thermal conductivity of high-porosity heavily doped biomorphic silicon carbide prepared from sapele wood biocarbon. Physics of the Solid State, 2012, 54, 1732-1739.	0.6	5
50	Electrical resistivity and thermal conductivity of SiC/Si ecoceramics prepared from sapele wood biocarbon. Physics of the Solid State, 2012, 54, 2132-2141.	0.6	3
51	Effects of internal molecular degrees of freedom on the thermal conductivity of some glasses and disordered crystals. Physical Review B, 2012, 85, .	3.2	29
52	Crystal Growth and Physical Characterization of Monoclinic Li ₃ Lu ₃ Ba ₂ (MoO ₄) ₈ . A Spectrally Broadened Disordered Crystal for Ultrafast Mode-Locked Lasers. Crystal Growth and Design, 2012, 12, 3878-3887.	3.0	18
53	Determination of the Néel temperature from measurements of the thermal conductivity of the Co3O4 antiferromagnet nanostructured in porous glass channels. Physics of the Solid State, 2012, 54, 1066-1069.	0.6	15
54	Capacity and thermal conductivity of a nanocomposite chrysolite asbestos-KDP (KH2PO4). Physics of the Solid State, 2011, 53, 1099-1103.	0.6	11

#	Article	IF	CITATIONS
55	Heat capacity and phonon mean free path in the biocarbon matrix of beech. Physics of the Solid State, 2011, 53, 1747-1751.	0.6	2
56	Structure, electrical resistivity, and thermal conductivity of beech wood biocarbon produced at carbonization temperatures below 1000°C. Physics of the Solid State, 2011, 53, 2398-2407.	0.6	15
57	Thermopower of beech wood biocarbon. Physics of the Solid State, 2011, 53, 2244-2249.	0.6	5
58	Heat Generation and Flow and Thermal Effects on Optical Spectra in Laser Diode Pumped Thulium-doped Vanadate Crystals. , $2011,$,.		0
59	Thermal conductivity of high-porosity biocarbon preforms of beech wood. Physics of the Solid State, 2010, 52, 1115-1122.	0.6	21
60	Thermal conductivity of the pine-biocarbon-preform/copper composite. Physics of the Solid State, 2010, 52, 1348-1355.	0.6	5
61	Specific features in the behavior of electrical resistivity of the pine biocarbon preform/copper composite. Physics of the Solid State, 2010, 52, 2333-2339.	0.6	3
62	Thermopower coefficient of pine-wood biocarbon preforms and the biocarbon-preform/copper composites. Physics of the Solid State, 2010, 52, 2340-2344.	0.6	0
63	New type of sorption composite for chemical heat pump and refrigeration systems. Applied Thermal Engineering, 2010, 30, 1455-1460.	6.0	16
64	Influence of the Y211 phase on anisotropic transport properties and vortex dynamics of the melt-textured Y123/Y211 composites. Physica C: Superconductivity and Its Applications, 2010, 470, S1009-S1010.	1.2	5
65	Disorder effects on heat transport properties of orientationally disordered crystals. Physical Review B, 2010, 81, .	3.2	15
66	10.1007/s11451-008-1001-8., 2010, 50, 1.		0
67	Thermal conductivity of high-porosity cellular-pore biocarbon prepared from sapele wood. Physics of the Solid State, 2009, 51, 2023-2031.	0.6	12
68	Heat capacity and thermopower coefficient of the carbon preform of sapele wood. Physics of the Solid State, 2009, 51, 2252-2256.	0.6	3
69	Heat capacity of the white pine biocarbon preform and the related biocarbon/copper composite. Physics of the Solid State, 2009, 51, 2264-2268.	0.6	3
70	Thermal conductivity and heat capacity of Si3N4/BN fiber monoliths. Physics of the Solid State, 2009, 51, 2274-2281.	0.6	1
71	The influence of the disordered dipole subsystem on the thermal conductivity of solid CO at low temperatures. Low Temperature Physics, 2009, 35, 343-347.	0.6	1
72	Seventh International Conference on Cryocrystals and Quantum Crystals Wroclaw, Poland, July 31st–August 5th, 2008. Low Temperature Physics, 2009, 35, 249-250.	0.6	0

#	Article	IF	Citations
73	Thermal Conductivity of a Molecular Crystal withÂRotational Degrees of Freedom: OrientationalÂDefect Scattering. Journal of Low Temperature Physics, 2008, 150, 323-329.	1.4	2
74	Thermal conductivity and heat capacity of LuMgCu4. Physics of the Solid State, 2008, 50, 1-5.	0.6	1
75	Thermopower of biomorphic silicon carbide. Physics of the Solid State, 2008, 50, 1407-1411.	0.6	3
76	Thermal conductivity of high-porosity biocarbon precursors of white pine wood. Physics of the Solid State, 2008, 50, 2245-2255.	0.6	15
77	Influence of crystallite size on the thermal conductivity in BaTiO3 nanoceramics. Applied Physics Letters, 2007, 90, 114104.	3.3	20
78	Heterogeneous states observed in the CD4â^'CH4system. Physical Review B, 2007, 75, .	3.2	4
79	Observation of relaxation of molecular spins in CH4 and CD4 crystals in thermal conductivity experiment. Low Temperature Physics, 2007, 33, 587-589.	0.6	7
80	The peculiarities of heat transfer in CO2 and N2O solids at low temperatures. Low Temperature Physics, 2007, 33, 595-599.	0.6	5
81	Orientational isotopic effects in the thermal conductivity of CH4â°•CD4 solid solutions. Low Temperature Physics, 2007, 33, 1061-1067.	0.6	3
82	On the upper limit of thermal conductivity GaN crystals. Solid State Communications, 2007, 144, 114-117.	1.9	17
83	Thermal conductivity of a moderate heavy-fermion compound YbZnCu4. Physics of the Solid State, 2007, 49, 18-22.	0.6	0
84	Specific heat and velocity of sound in a moderate heavy-fermion compound YbZnCu4. Physics of the Solid State, 2007, 49, 200-204.	0.6	1
85	Thermal conductivity of bio-SiC and the Si embedded in cellular pores of the SiC/Si biomorphic composite. Physics of the Solid State, 2007, 49, 211-214.	0.6	5
86	Heat capacity of silicon carbide at low temperatures. Physics of the Solid State, 2007, 49, 1835-1838.	0.6	2
87	Heat capacity and velocity of sound in the SiC/Si biomorphic composite. Physics of the Solid State, 2007, 49, 1839-1844.	0.6	2
88	Thermal conductivity of the YbMgCu4 "light―heavy-fermion system. Physics of the Solid State, 2007, 49, 2038-2041.	0.6	3
89	Heat capacity and velocity of sound in the YbMgCu4 "light―heavy-fermion system. Physics of the Solid State, 2007, 49, 2042-2046.	0.6	0
90	Low-temperature thermal conductivity of cryocrystals formed by linear three-atom molecules. Physical Review B, 2006, 74, .	3.2	7

#	Article	IF	Citations
91	Temperature dependence of the magnetic susceptibility of solid oxygen. Low Temperature Physics, 2006, 32, 1082-1085.	0.6	5
92	Thermal and electrical properties of a white-eucalyptus carbon preform for SiC/Si ecoceramics. Physics of the Solid State, 2006, 48, 441-446.	0.6	15
93	Thermal conductivity of a moderate heavy-fermion compound YbInO.2AgO.8Cu4. Physics of the Solid State, 2006, 48, 625-630.	0.6	0
94	Thermal conductivity of ultrathin InSb semiconductor nanowires with properties of the Luttinger liquid. Physics of the Solid State, 2006, 48, 1584-1590.	0.6	8
95	Heat capacity of a white-eucalyptus biocarbon template for SiC/Si ecoceramics. Physics of the Solid State, 2006, 48, 2056-2059.	0.6	4
96	Anisotropy of the thermal conductivity and electrical resistivity of the SiC/Si biomorphic composite based on a white-eucalyptus biocarbon template. Physics of the Solid State, 2006, 48, 2281-2288.	0.6	6
97	Glass-like behaviour of thermal conductivity of CH 4 –CD 4 solid solutions. Europhysics Letters, 2006, 74, 96-102.	2.0	6
98	Heat capacity and phonon mean free path of wurtzite GaN. Applied Physics Letters, 2006, 89, 061901.	3.3	68
99	Dominant mechanisms of phonon scattering in low-temperature phases of solid methanes. Physical Review B, 2006, 73, .	3.2	10
100	Low-temperature thermal conductivity of GexAs40â°'xS60 glasses. Solid State Communications, 2005, 134, 349-353.	1.9	2
101	Thermal and Acoustic Properties of Chrysotile Asbestos. Physics of the Solid State, 2005, 47, 370.	0.6	8
102	Low-Temperature Thermal Conductivity of an Opal + Epoxy-Resin Nanocomposite. Physics of the Solid State, 2005, 47, 769.	0.6	1
103	Thermal conductivity of the SiC/Si biomorphic composite, a new cellular ecoceramic. Physics of the Solid State, 2005, 47, 1216-1220.	0.6	14
104	Thermal Conductivity of NaCl Embedded in Randomly Distributed Porous-Glass Channels. Physics of the Solid State, 2005, 47, 1249.	0.6	0
105	Thermal Conductivity of Crystalline Deuterated Methane. Journal of Low Temperature Physics, 2005, 139, 563-566.	1.4	1
106	Heat capacity ofl±â^'GaN: Isotope effects. Physical Review B, 2005, 72, .	3.2	68
107	Spinon thermal conductivity of-(CuO2)-spin chains in LiCuVO4. Physics of the Solid State, 2004, 46, 357-363.	0.6	8
108	Thermal conductivity of NaCl loaded in regular arrays of nanovoids in a synthetic opal single crystal. Physics of the Solid State, 2004, 46, 1961-1968.	0.6	2

#	Article	IF	CITATIONS
109	Lattice thermal conductivity in mixed crystals in the absence of mass mismatch: Investigation of N2â^'COsolid solution. Physical Review B, 2004, 69, .	3.2	6
110	Thermal conductivity of GaN crystals in 4.2–300 K range. Solid State Communications, 2003, 128, 69-73.	1.9	152
111	Thermal conductivity of bulk GaN single crystals. Physica B: Condensed Matter, 2003, 329-333, 1531-1532.	2.7	8
112	Thermal conductivity of GaN crystals grown by high pressure method. Physica Status Solidi (B): Basic Research, 2003, 240, 447-450.	1.5	35
113	Thermal conductivity of crystalline chrysotile asbestos. Physics of the Solid State, 2003, 45, 57-60.	0.6	3
114	Phonon scattering from the boundaries of small crystals embedded in a dielectric porous-glass matrix. Physics of the Solid State, 2003, 45, 381-385.	0.6	3
115	Thermal conductivity of HgSe loaded in the pore lattice of a synthetic opal single crystal. Physics of the Solid State, 2003, 45, 566-572.	0.6	2
116	Thermal conductivity of the opal-epoxy resin nanocomposite. Physics of the Solid State, 2003, 45, 957-960.	0.6	5
117	Heat transport over nonmagnetic lithium chains in LiCuVO4, a new one-dimensional superionic conductor. Physics of the Solid State, 2003, 45, 2093-2098.	0.6	14
118	High thermal conductivity of solid nitrous oxide at low temperatures. Physical Review B, 2003, 67, .	3.2	8
119	Low-temperature thermal conductivity of solid carbon dioxide. Low Temperature Physics, 2003, 29, 449-450.	0.6	9
120	Specific heat and isothermal magnetocaloric effect for single-crystal UAs. Physical Review B, 2003, 67,	3. 2	9
121	Excess thermal resistivity in N2–CO solid solution at low carbon monoxide concentration. Low Temperature Physics, 2003, 29, 744-745.	0.6	0
122	Thermal conductivity of solid parahydrogen with methane admixtures. Low Temperature Physics, 2003, 29, 527-529.	0.6	1
123	Behavior of the Lorenz number in the light heavy-fermion system YbInCu4. Physics of the Solid State, 2002, 44, 1016-1021.	0.6	0
124	Lattice thermal conductivity of compounds with inhomogeneous intermediate rare-earth ion valence. Physics of the Solid State, 2002, 44, 1031-1034.	0.6	1
125	Structural and thermal properties of the opal-epoxy resin nanocomposite. Physics of the Solid State, 2002, 44, 1061-1066.	0.6	3
126	Unusual behavior of the lattice thermal conductivity and of the Lorenz number in the YbIn1â^'x Cu4+x system. Physics of the Solid State, 2002, 44, 1212-1217.	0.6	1

#	Article	IF	CITATIONS
127	Quantum Crystals Under Pressure as a Probe of Many-Body Forces. Journal of Low Temperature Physics, 2002, 126, 703-708.	1.4	7
128	Phonon scattering by structural defects in solid p-H2 and in p-H2–o-D2 solutions. Low Temperature Physics, 2001, 27, 504-508.	0.6	5
129	Magnetic Properties of Oxygen Clusters. Journal of Low Temperature Physics, 2001, 122, 179-186.	1.4	0
130	Thermal Conductivity of O2- and N2-Doped Solid CH4. Journal of Low Temperature Physics, 2001, 122, 187-193.	1.4	0
131	Self-Consistent Theory of Lattice Distortion in Solid p-H2, o-D2 and HD. Journal of Low Temperature Physics, 2001, 122, 537-544.	1.4	7
132	Low-temperature heat capacity and heat conductivity of single-crystal synthetic opals. Physics of the Solid State, 2001, 43, 190-193.	0.6	3
133	Heat conductivity of the heavy-fermion compound YbAgCu4. Physics of the Solid State, 2001, 43, 218-223.	0.6	5
134	Thermal conductivity of the "light―heavy-fermion compound YbIn0.7Ag0.3Cu4. Physics of the Solid State, 2001, 43, 1811-1815.	0.6	0
135	Magnetic, electrical transport, and thermal properties of a uranium intermetallic compoundUCu5In. Physical Review B, 2001, 63, .	3.2	18
136	Low-temperature anomalies in the magnetic and thermal properties of molecular cryocrystals doped with oxygen impurity. Low Temperature Physics, 2000, 26, 767-777.	0.6	0
137	Thermal and Dielectric Behaviour of Pure and Doped Na0.5Bi0.5TiO3 at Low Temperatures. Physica Status Solidi (B): Basic Research, 2000, 221, 789-795.	1.5	9
138	Anisotropy of the thermal conductivity of melt-textured Y123/Y211 composites. Physica B: Condensed Matter, 2000, 284-288, 1015-1016.	2.7	5
139	Thermo-magnetic effects in La2â^'xSrxCuO4. Physica B: Condensed Matter, 2000, 284-288, 1017-1018.	2.7	0
140	Anisotropy of thermal conductivity in YBaCuO single crystals. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1867-1868.	1.2	6
141	Thermal conductivity and Lorentz number of the "Golden―phase of the Sm1â^'x GdxS system with homogeneous variable valence of samarium. Physics of the Solid State, 2000, 42, 1017-1022.	0.6	0
142	Heat conductivity of LulnCu4. Physics of the Solid State, 2000, 42, 1394-1397.	0.6	3
143	Heat conductivity of LuAgCu4. Physics of the Solid State, 2000, 42, 1990-1994.	0.6	0
144	Broken symmetry phase transition in solid p-H2, o-D2 and HD: crystal field effects. Physica B: Condensed Matter, 1999, 265, 12-15.	2.7	2

#	Article	IF	Citations
145	Heat conductivity and the Lorentz number of the Sm1â^'x GdxS "black―phase. Physics of the Solid State, 1999, 41, 22-24.	0.6	O
146	Coherent effects in regular three-dimensional lattices of insulator nanocrystals in an opal matrix. Physics of the Solid State, 1999, 41, 313-318.	0.6	3
147	Thermal conductivity of YbInCu4. Physics of the Solid State, 1999, 41, 1418-1421.	0.6	4
148	Low Temperature Thermal Conductivity of Carbon Monoxide. Journal of Low Temperature Physics, 1998, 111, 379-385.	1.4	14
149	Broken Symmetry Phase Transition in Solid HD: Quantum Behavior at Very High Pressures. Journal of Low Temperature Physics, 1998, 113, 723-728.	1.4	15
150	Unusual behavior of thermal conductivity of a crystalline-NaCl-opal nanocomposite. Physics of the Solid State, 1998, 40, 348-349.	0.6	1
151	Heat conductivity of three-dimensional regular structures of crystalline and amorphous selenium incorporated in voids of synthetic opal. Physics of the Solid State, 1998, 40, 528-531.	0.6	4
152	Thermal conductivity of (VO)2P2O7 single crystals. Physics of the Solid State, 1998, 40, 1896-1897.	0.6	1
153	Unusual magnetic properties of UGa 3 single crystals. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 41-42.	2.3	14
154	Low-Temperature Thermal and Dielectric Properties of Na0.5Bi0.5TiO3. Physica Status Solidi A, 1998, 169, 209-215.	1.7	13
155	Thermal transport in Sm1+xBa2â^'xCu3Oy solid solution. Physica C: Superconductivity and Its Applications, 1998, 306, 58-66.	1.2	2
156	Reentrant Orientational Phase Transitions and Critical Points at Quantum Orientational Melting. Journal of Low Temperature Physics, 1998, 110, 147-152.	1.4	5
157	Broken symmetry phase transition in solid HD: a manifestation of quantum orientational melting. Low Temperature Physics, 1998, 24, 518-522.	0.6	4
158	Thermal conductivity of solid argon with oxygen admixtures. Physical Review B, 1998, 58, 2380-2382.	3.2	8
159	Heat transfer in solidCH4: Influence of an atomic impurity (Kr). Physical Review B, 1998, 58, 3089-3093.	3.2	6
160	Thermal conductivity of SmBa2Cu3O7â^Î oxidized at 250 bar: A comparison of the phonon and electron models. Physical Review B, 1997, 56, 11267-11272.	3.2	7
161	Specific features in the thermal conductivity of synthetic opals. Physics of the Solid State, 1997, 39, 341-346.	0.6	7
162	Heat transport in the insulating phases of Sm1+x Ba2-x Cu3Oy high temperature superconductors. Zeitschrift Fýr Physik B-Condensed Matter, 1997, 104, 745-747.	1.1	8

#	Article	IF	CITATIONS
163	Thermal conductivity of solid nitrogen doped with oxygen impurities. High Temperatures - High Pressures, 1997, 29, 423-430.	0.3	2
164	Magnetic susceptibility of molecular cryocrystals doped with oxygen impurity. European Physical Journal D, 1996, 46, 2101-2102.	0.4	1
165	Experimental and theoretical investigations of unusual-hysteretic-behaviour of thermal conductivity in 123 and 124 HTSC compounds. European Physical Journal D, 1996, 46, 1157-1158.	0.4	0
166	Evidence for the shift of the transition temperature in RBa2Cu4O8 by thermal-conductivity measurements. Physical Review B, 1995, 52, R7030-R7033.	3.2	12
167	Thermal conductivity of rare-earth element dodecaborides. Journal of Physics Condensed Matter, 1995, 7, 8927-8937.	1.8	5
168	Transition and rare earth element dodecaborides. Journal of Alloys and Compounds, 1995, 219, 215-218.	5.5	21
169	Thermal conductivity of solid nitrogen. Physical Review B, 1994, 50, 543-546.	3.2	38
170	An evidence for the hydrogen diffusion in niobium by thermal conductivity measurements. Solid State Communications, 1993, 87, 501-505.	1.9	1
171	Hysteresis of thermal conductivity and electrical resistivity of niobium hydrides. Solid State Communications, 1993, 85, 907-910.	1.9	7
172	Thermal conductivity of REIn3 (REî—¼Tb, Dy, Tm, Lu) single crystals. Journal of Alloys and Compounds, 1993, 199, 145-149.	5.5	9
173	Thermal conductivity of solid oxygen. Physical Review Letters, 1993, 71, 97-100.	7.8	27
174	Thermal conductivity of UCuP2 and UCuAs2 single crystals. Journal of Alloys and Compounds, 1992, 189, 217-220.	5.5	10
175	Cryostat for investigation of the thermal conductivity of cryocrystals. Cryogenics, 1992, 32, 601-603.	1.7	30
176	Thermal conductivity of Ndî—,Ceî—,Cuî—,O superconductors. Journal of the Less Common Metals, 1991, 169, L17-L21.	0.8	5
177	Thermal conductivity of niobium hydrides in the temperature range 4.2–420 K. Journal of Alloys and Compounds, 1991, 176, 233-240.	5.5	7
178	Quantum melting in a system of rotors. Journal of Physics Condensed Matter, 1991, 3, 3855-3858.	1.8	17
179	Thermal conductivity of Bi-based high-Tc superconductors in the vicinity of superconducting transition. Solid State Communications, 1990, 75, 779-783.	1.9	19
180	Chirality and the thermophysical properties of molecular solid phases under pressure: (+)- and (\hat{A}_{\pm}) -camphor. Molecular Physics, 1990, 70, 1065-1083.	1.7	8

#	Article	IF	CITATIONS
181	The magnetic properties of \hat{I}^3 -phase and liquid oxygen. Journal of Physics Condensed Matter, 1989, 1, 999-1004.	1.8	7
182	Anomalous behaviour of thermal conductivity of Tl-Ba-Ca-Cu-O. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 139, 265-269.	2.1	8
183	Evidence for hysteresis behaviour and anomaly of thermal conductivity in Yî—,Baî—,Cuî—,O superconductor. Solid State Communications, 1989, 71, 419-424.	1.9	17
184	Thermal conductivity of the Y-Ba-Cu-O tetragonal structure: phase transitions and hysteresis behaviour. Superconductor Science and Technology, 1989, 1, 296-301.	3.5	26
185	Thermal conductivity of YBa2Cu3O7â^î" influenced by oxygen content. Physica C: Superconductivity and Its Applications, 1988, 153-155, 1347-1348.	1.2	17
186	Thermal conductivity anomalies in GdBa2Cu3O7â^'x. Physics Letters, Section A: General, Atomic and Solid State Physics, 1988, 127, 225-227.	2.1	6
187	Thermal conductivity and electrical resistivity of the high-Tc superconductor YBa2Cu3O9â^î. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 122, 431-433.	2.1	59
188	Thermal conductivity of the amorphous alloy Fe40Ni40P14B6between 80 and 300 K. Journal Physics D: Applied Physics, 1987, 20, 1500-1506.	2.8	96
189	Theory of the thermal expansion anomaly in solid nitrogen due to O2impurity. Journal of Physics C: Solid State Physics, 1986, 19, 5309-5317.	1.5	3
190	Discussion of the Heat Flux Rectification in the Solid–Solid System in the Acoustic-Mismatch Theory Framework. Physica Status Solidi A, 1984, 81, 171-176.	1.7	6
191	Thermal expansion of crystals of the N2 type. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1981, 108, 1013-1014.	0.9	0
192	Heat flow asymmetry on a junction of quartz with graphite. Physica Status Solidi A, 1978, 47, 229-232.	1.7	32