List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4767956/publications.pdf Version: 2024-02-01

SAKVA S SEN

#	Article	IF	CITATIONS
1	Substitution at sp ³ boron of a six-membered NHC·BH ₃ : convenient access to a dihydroxyborenium cation. Chemical Communications, 2022, 58, 3783-3786.	4.1	12
2	The Hypersilyl Substituent in Heavier Lowâ€Valent Group 14 Chemistry. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	9
3	A Wellâ€Ðefined Calcium Compound Catalyzes Trimerization of Arylisocyanates into 1,3,5â€Triarylisocyanurates. ChemCatChem, 2022, 14, .	3.7	2
4	Nucleophilic Substitution at a Coordinatively Saturated Five-Membered NHCâ^™Haloborane Centre. Inorganics, 2022, 10, 97.	2.7	3
5	Diverse reactivity of carbenes and silylenes towards fluoropyridines. Chemical Communications, 2021, 57, 4428-4431.	4.1	9
6	Diverse Reactivity of Hypersilylsilylene with Boranes and Three-Component Reactions with Aldehyde and HBpin. Inorganic Chemistry, 2021, 60, 1654-1663.	4.0	22
7	Substrate, Catalyst, and Solvent: The Triune Nature of Multitasking Reagents in Hydroboration and Cyanosilylation. Organometallics, 2021, 40, 1104-1112.	2.3	8
8	Reactivities of Silaimines with Boranes: From Cooperative B–H Bond Activation to Donor Stabilized Silyl Cation. Organometallics, 2021, 40, 2133-2138.	2.3	15
9	Access to a Variety of Ge(II) and Sn(II) Compounds through Substitution of Hypersilyl Moiety. Organometallics, 2021, 40, 2651-2657.	2.3	5
10	Unsymmetrical sp ² â€sp ³ Disilenes. Angewandte Chemie, 2021, 133, 20874-20878.	2.0	1
11	Unsymmetrical sp ² â€sp ³ Disilenes. Angewandte Chemie - International Edition, 2021, 60, 20706-20710.	13.8	8
12	Readily available lithium compounds as catalysts for the hydroboration of carbodiimides and esters. Journal of Organometallic Chemistry, 2021, 949, 121924.	1.8	20
13	Deoxygenative hydroboration of primary and secondary amides: a catalyst-free and solvent-free approach. Chemical Communications, 2021, 57, 10596-10599.	4.1	17
14	Lithium compound catalyzed deoxygenative hydroboration of primary, secondary and tertiary amides. Dalton Transactions, 2021, 50, 2354-2358.	3.3	26
15	Pyridylpyrrolido ligand in Ge(<scp>ii</scp>) and Sn(<scp>ii</scp>) chemistry: synthesis, reactivity and catalytic application. Dalton Transactions, 2021, 50, 16678-16684.	3.3	13
16	Cyanosilylation by Compounds with Main-Group Elements: An Odyssey. ACS Omega, 2020, 5, 25477-25484.	3.5	24
17	Amidinato Germyleneâ€Zinc Complexes: Synthesis, Bonding, and Reactivity. Chemistry - an Asian Journal, 2020, 15, 3116-3121.	3.3	11
18	Access to diverse germylenes and a six-membered dialane with a flexible β-diketiminate. Chemical Communications, 2020, 56, 11871-11874.	4.1	10

#	Article	IF	CITATIONS
19	Stepwise Nucleophilic Substitution to Access Saturated N-heterocyclic Carbene Haloboranes with Boron–Methyl Bonds. Organometallics, 2020, 39, 4696-4703.	2.3	9
20	A Tale of Biphenyl and Terphenyl Substituents for Structurally Diverse Ketiminato Magnesium, Calcium and Germanium Complexes. Chemistry - an Asian Journal, 2020, 15, 820-827.	3.3	4
21	Transmetallation vs adduct: Diverse reactivity of N,O-ketiminato germylene with [Cp*MCl2]2 (MÂ= Rh or) Tj ET	Qq1_1_0.78	34314 rgBT ((
22	Saturated Nâ€Heterocyclic Carbene Based Thiele's Hydrocarbon with a Tetrafluorophenylene Linker. Chemistry - A European Journal, 2019, 25, 16533-16537.	3.3	15
23	Lithium compounds as single site catalysts for hydroboration of alkenes and alkynes. Chemical Communications, 2019, 55, 11711-11714.	4.1	31
24	Synthesis and Reactivity of a Hypersilylsilylene. Inorganic Chemistry, 2019, 58, 10536-10542.	4.0	30
25	Silylene induced cooperative B–H bond activation and unprecedented aldehyde C–H bond splitting with amidinate ring expansion. Chemical Communications, 2019, 55, 3536-3539.	4.1	26
26	Câ^'F Bond Activation by a Saturated Nâ€Heterocyclic Carbene: Mesoionic Compound Formation and Adduct Formation with B(C ₆ F ₅) ₃ . Angewandte Chemie - International Edition, 2019, 58, 2804-2808.	13.8	27
27	Câ^'F Bond Activation by a Saturated Nâ€Heterocyclic Carbene: Mesoionic Compound Formation and Adduct Formation with B(C ₆ F ₅) ₃ . Angewandte Chemie, 2019, 131, 2830-2834.	2.0	14
28	Easily accessible lithium compound catalyzed mild and facile hydroboration and cyanosilylation of aldehydes and ketones. Chemical Communications, 2018, 54, 6843-6846.	4.1	66
29	Silicon-fluorine chemistry: from the preparation of SiF2to C–F bond activation using silylenes and its heavier congeners. Chemical Communications, 2018, 54, 5046-5057.	4.1	28
30	Access to Silicon(II)– and Germanium(II)–Indium Compounds. Organometallics, 2018, 37, 1206-1213.	2.3	11
31	Beyond Hydrofunctionalisation: A Wellâ€Defined Calcium Compound Catalysed Mild and Efficient Carbonyl Cyanosilylation. Chemistry - A European Journal, 2018, 24, 1269-1273.	3.3	27
32	Cyclometallation of a germylene ligand by concerted metalation–deprotonation of a methyl group. Dalton Transactions, 2018, 47, 15835-15844.	3.3	13
33	Alkaline Earth Metal Compounds of Methylpyridinato β-Diketiminate Ligands and Their Catalytic Application in Hydroboration of Aldehydes and Ketones. Organometallics, 2018, 37, 4576-4584.	2.3	50
34	Transition metal free catalytic hydroboration of aldehydes and aldimines by amidinato silane. Dalton Transactions, 2017, 46, 2420-2424.	3.3	67
35	Strikingly diverse reactivity of structurally identical silylene and stannylene. Dalton Transactions, 2017, 46, 6528-6532.	3.3	25
36	Different Reactivity of As ₄ towards Disilenes and Silylenes. Angewandte Chemie - International Edition, 2017, 56, 6655-6659.	13.8	23

#	Article	IF	CITATIONS
37	Metal free mild and selective aldehyde cyanosilylation by a neutral penta-coordinate silicon compound. Chemical Communications, 2017, 53, 6910-6913.	4.1	37
38	Benz-amidinato calcium iodide catalyzed aldehyde and ketone hydroboration with unprecedented functional group tolerance. Chemical Communications, 2017, 53, 4562-4564.	4.1	84
39	Unprecedented solvent induced inter-conversion between monomeric and dimeric silylene–zinc iodide adducts. Dalton Transactions, 2017, 46, 11418-11424.	3.3	11
40	C(sp ³)–F, C(sp ²)–F and C(sp ³)–H bond activation at silicon(<scp>ii</scp>) centers. Chemical Communications, 2017, 53, 9850-9853.	4.1	37
41	Facile access to a Ge(<scp>ii</scp>) dication stabilized by isocyanides. Chemical Communications, 2016, 52, 7890-7892.	4.1	15
42	Benz–amidinato Stabilized a Monomeric Calcium Iodide and a Lithium Calciate(II) Cluster featuring Group 1 and Group 2 Elements. ChemistrySelect, 2016, 1, 1066-1071.	1.5	13
43	Dynamic, Reversible Oxidative Addition of Highly Polar Bonds to a Transition Metal. Journal of the American Chemical Society, 2016, 138, 16140-16147.	13.7	20
44	Compounds with Lowâ€Valent pâ€Block Elements for Small Molecule Activation and Catalysis. ChemCatChem, 2016, 8, 486-501.	3.7	177
45	Cations and dications of heavier group 14 elements in low oxidation states. Dalton Transactions, 2015, 44, 12903-12923.	3.3	72
46	Stepwise isolation of low-valent, low-coordinate Sn and Pb mono- and dications in the coordination sphere of platinum. Chemical Science, 2015, 6, 425-435.	7.4	41
47	Bâ•B and B≡E (E = N and O) Multiple Bonds in the Coordination Sphere of Late Transition Metals. Accounts of Chemical Research, 2014, 47, 180-191.	15.6	69
48	A Stable Silanone with a Threeâ€Coordinate Silicon Atom: A Century‣ong Wait is Over. Angewandte Chemie - International Edition, 2014, 53, 8820-8822.	13.8	33
49	A B–C Double Bond Unit Coordinated to Platinum: An Alkylideneboryl Ligand that Is Isoelectronic to Neutral Aminoborylene Ligands. Angewandte Chemie - International Edition, 2014, 53, 2240-2244.	13.8	18
50	Simultaneous Fragmentation and Activation of White Phosphorus. Chemistry - A European Journal, 2013, 19, 9114-9117.	3.3	12
51	Activation of phosphorus by group 14 elements in low oxidation states. Chemical Communications, 2012, 48, 2169.	4.1	131
52	Stable Silaimines with Three- and Four-Coordinate Silicon Atoms. Inorganic Chemistry, 2012, 51, 11049-11054.	4.0	68
53	A Remarkable End-On Activation of Diazoalkane and Cleavage of Both C–Cl Bonds of Dichloromethane with a Silylene to a Single Product with Five-Coordinate Silicon Atoms. Organometallics, 2012, 31, 435-439.	2.3	18
54	Chemistry of functionalized silylenes. Chemical Science, 2012, 3, 659-682.	7.4	180

#	Article	IF	CITATIONS
55	Interconnected Bis-Silylenes: A New Dimension in Organosilicon Chemistry. Accounts of Chemical Research, 2012, 45, 578-587.	15.6	109
56	Elegant approach to spacer arranged silagermylene and bis(germylene) compounds. Chemical Communications, 2011, 47, 7206.	4.1	19
57	Formation of a Unsymmetrical Ring System via C–H Bond Activation of Diazobenzene by Stable N-Heterocyclic Chlorosilylene (PhC(N <i>t</i> Bu) ₂ SiCl). Organometallics, 2011, 30, 2643-2645.	2.3	24
58	Synthesis and Structure of [{PhC(N <i>t</i> Bu) ₂ } ₂ Ge ₂ (μ-S) ₂ Cl ₂] and a Germanium Dithiocarboxylate Analogue. Organometallics, 2011, 30, 1030-1033.	2.3	18
59	Striking Stability of a Substituted Silicon(II) Bis(trimethylsilyl)amide and the Facile Si–Me Bond Cleavage without a Transition Metal Catalyst. Journal of the American Chemical Society, 2011, 133, 12311-12316.	13.7	102
60	Reaction of a Base-Stabilized Bis(silylene) [PhC(NtBu)2Si]2 with Cyclooctatetraene without Cleavage of the Si-Si Bond. European Journal of Inorganic Chemistry, 2011, 2011, 1370-1373.	2.0	22
61	Zwitterionic Siâ€Câ€Siâ€P and Siâ€Pâ€Siâ€P Fourâ€Membered Rings with Twoâ€Coordinate Phosphorus Atoms. Angewandte Chemie - International Edition, 2011, 50, 2322-2325.	13.8	121
62	A Stable Cation of a CSi ₃ P Fiveâ€Membered Ring with a Weakly Coordinating Chloride Anion. Angewandte Chemie - International Edition, 2011, 50, 12510-12513.	13.8	35
63	A P ₄ Chain and Cage from Silyleneâ€Activated White Phosphorus. Angewandte Chemie - International Edition, 2011, 50, 11786-11789.	13.8	80
64	Back Cover: A Stable Cation of a CSi3P Five-Membered Ring with a Weakly Coordinating Chloride Anion (Angew. Chem. Int. Ed. 52/2011). Angewandte Chemie - International Edition, 2011, 50, 12660-12660.	13.8	0
65	Synthesis of Stable Silicon Heterocycles by Reaction of Organic Substrates with a Chlorosilylene [PhC(N <i>t</i> Bu) ₂ SiCl]. Chemistry - A European Journal, 2011, 17, 4283-4290.	3.3	75
66	Synthesis of a Stable Four-Membered Si ₂ O ₂ Ring and a Dimer with Two Four-Membered Si ₂ O ₂ Rings Bridged by Two Oxygen Atoms, with Five-Coordinate Silicon Atoms in Both Ring Systems. Organometallics, 2010, 29, 2343-2347.	2.3	73
67	Synthesis of Monomeric Divalent Tin(II) Compounds with Terminal Chloride, Amide, and Triflate Substituents. European Journal of Inorganic Chemistry, 2010, 2010, 5304-5311.	2.0	62
68	Convenient Access to Monosilicon Epoxides with Pentacoordinate Silicon. Angewandte Chemie - International Edition, 2010, 49, 3952-3955.	13.8	65
69	High Yield Access to Silylene RSiCl (R = PhC(N <i>t</i> Bu) ₂) and Its Reactivity toward Alkyne: Synthesis of Stable Disilacyclobutene. Journal of the American Chemical Society, 2010, 132, 1123-1126.	13.7	271
70	One Pot Synthesis of Disilatricycloheptene Analogue and Jutzi's Disilene. Inorganic Chemistry, 2010, 49, 9689-9693.	4.0	30
71	Facile Syntheses of Silylene Nickel Carbonyl Complexes from Lewis Base Stabilized Chlorosilylenes. Inorganic Chemistry, 2010, 49, 10199-10202.	4.0	88
72	Reactions of a Bis-silylene (LSiâ^'SiL, L = PhC(N <i>t</i> Bu) ₂) and a Heteroleptic Chloro Silylene (LSiCl) with Benzil: Formation of Bis(siladioxolene) and Monosiladioxolene Analogue with Five-Coordinate Silicon Atoms in Both Ring Systems. Organometallics, 2010, 29, 3930-3935.	2.3	58

#	Article	IF	CITATIONS
73	Synthesis, structure, and theoretical investigation of amidinato supported 1,4-disilabenzene. Chemical Communications, 2010, 46, 5873.	4.1	72
74	Reactivity Studies of a Gelâ^'Gel Compound with and without Cleavage of the Geâ^'Ge Bond. Inorganic Chemistry, 2010, 49, 5786-5788.	4.0	53
75	Endâ€On Nitrogen Insertion of a Diazo Compound into a Germanium(II) Hydrogen Bond and a Comparable Reaction with Diethyl Azodicarboxylate. Angewandte Chemie - International Edition, 2009, 48, 4246-4248.	13.8	35
76	A Remarkable Base‣tabilized Bis(silylene) with a Silicon(I)–Silicon(I) Bond. Angewandte Chemie - International Edition, 2009, 48, 8536-8538.	13.8	158
77	Neutral Penta- and Hexacoordinate N-Heterocyclic Carbene Complexes Derived from SiX4 (X = F, Br). Organometallics, 2009, 28, 6374-6377.	2.3	59
78	RGe(I)Ge(I)R Compound (R = PhC(N <i>t</i> Bu) ₂) with a Geâ^'Ge Single Bond and a Comparison with the Gauche Conformation of Hydrazine. Organometallics, 2008, 27, 5459-5463.	2.3	175