Xiaodong Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4767638/publications.pdf

Version: 2024-02-01

		81900	1	155660	
104	3,831	39		55	
papers	citations	h-index		g-index	
					1
119	119	119		2933	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena, 2013, 104, 93-102.	5.0	153
2	Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Science of the Total Environment, 2017, 595, 191-200.	8.0	142
3	EFFECTS OF LAND USE ON SOIL MOISTURE VARIATIONS IN A SEMIâ€ARID CATCHMENT: IMPLICATIONS FOR LAND AGRICULTURAL WATER MANAGEMENT. Land Degradation and Development, 2014, 25, 163-172.	ND 3.9	125
4	Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China. Catena, 2011, 87, 357-367.	5.0	107
5	Soil Quality Indicators in Relation to Land Use and Topography in a Small Catchment on the Loess Plateau of China. Land Degradation and Development, 2015, 26, 54-61.	3.9	106
6	Identifying a suitable revegetation technique for soil restoration on water-limited and degraded land: Considering both deep soil moisture deficit and soil organic carbon sequestration. Geoderma, 2018, 319, 61-69.	5.1	106
7	Changes in vegetation condition in areas with different gradients (1980–2010) on the Loess Plateau, China. Environmental Earth Sciences, 2013, 68, 2427-2438.	2.7	105
8	Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis. Agricultural Water Management, 2020, 228, 105906.	5.6	77
9	Biosynthesis of rare hexoses using microorganisms and related enzymes. Beilstein Journal of Organic Chemistry, 2013, 9, 2434-2445.	2.2	74
10	Estimating spatial mean soil water contents of sloping jujube orchards using temporal stability. Agricultural Water Management, 2011, 102, 66-73.	5.6	73
11	Radiation interception and utilization by wheat/maize strip intercropping systems. Agricultural and Forest Meteorology, 2015, 204, 58-66.	4.8	71
12	Scale effect and spatially explicit drivers of interactions between ecosystem servicesâ€"A case study from the Loess Plateau. Science of the Total Environment, 2021, 785, 147389.	8.0	70
13	Drought variation trends in different subregions of the Chinese Loess Plateau over the past four decades. Agricultural Water Management, 2012, 115, 167-177.	5.6	66
14	Growth, yield, and nitrogen use in the wheat/maize intercropping system in an arid region of northwestern China. Field Crops Research, 2014, 167, 19-30.	5.1	64
15	Effects of large gullies on catchment-scale soil moisture spatial behaviors: A case study on the Loess Plateau of China. Geoderma, 2016, 261, 1-10.	5.1	62
16	Maize–Soybean Intercropping Interactions Above and Below Ground. Crop Science, 2014, 54, 914-922.	1.8	61
17	The dynamic effects of pastures and crop on runoff and sediments reduction at loess slopes under simulated rainfall conditions. Catena, 2014, 119, 1-7.	5.0	59
18	Development and evaluation of a physically based multiscalar drought index: The Standardized Moisture Anomaly Index. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,575.	3.3	59

#	Article	IF	CITATIONS
19	Variations of Soil Organic Carbon Following Land Use Change on Deep‣oess Hillsopes in China. Land Degradation and Development, 2017, 28, 1902-1912.	3.9	58
20	Actual ET modelling based on the Budyko framework and the sustainability of vegetation water use in the loess plateau. Science of the Total Environment, 2017, 579, 1550-1559.	8.0	57
21	Border row effects on light interception in wheat/maize strip intercropping systems. Field Crops Research, 2017, 214, 1-13.	5.1	57
22	Exotic shrub species (Caragana korshinskii) is more resistant to extreme natural drought than native species (Artemisia gmelinii) in a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, 2018, 263, 207-216.	4.8	57
23	Soil water and root distribution of apple tree (Malus pumila Mill) stands in relation to stand age and rainwater collection and infiltration system (RWCI) in a hilly region of the Loess Plateau, China. Catena, 2018, 170, 324-334.	5.0	57
24	Changes of soil hydraulic properties under early-stage natural vegetation recovering on the Loess Plateau of China. Catena, 2014, 113, 386-391.	5.0	56
25	The impact of urbanization and aging on food security in developing countries: The view from Northwest China. Journal of Cleaner Production, 2021, 292, 126067.	9.3	56
26	Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China. Agricultural Water Management, 2017, 184, 170-177.	5.6	54
27	Impact of climate change and irrigation technology advancement on agricultural water use in China. Climatic Change, 2010, 100, 797-805.	3.6	53
28	Estimation of spatial soil moisture averages in a large gully of the Loess Plateau of China through statistical and modeling solutions. Journal of Hydrology, 2013, 486, 466-478.	5.4	52
29	Simulated Study on Effects of Ground Managements on Soil Water and Available Nutrients in Jujube Orchards. Land Degradation and Development, 2016, 27, 35-42.	3.9	52
30	Soil water effects of agroforestry in rainfed jujube (Ziziphus jujube Mill.) orchards on loess hillslopes in Northwest China. Agriculture, Ecosystems and Environment, 2017, 247, 343-351.	5.3	52
31	Extreme natural drought enhances interspecific facilitation in semiarid agroforestry systems. Agriculture, Ecosystems and Environment, 2018, 265, 444-453.	5.3	52
32	Effects of water limitation on yield advantage and water use in wheat (Triticum aestivum L.)/maize (Zea) Tj ETQ	90	Г/Qverlock 10
33	Soil Water Content and Root Patterns in a Rainâ€fed Jujube Plantation across Stand Ages on the Loess Plateau of China. Land Degradation and Development, 2017, 28, 207-216.	3.9	50
34	Effects of water collection and mulching combinations on water infiltration and consumption in a semiarid rainfed orchard. Journal of Hydrology, 2018, 558, 432-441.	5.4	49
35	Seasonal water use patterns of rainfed jujube trees in stands of different ages under semiarid Plantations in China. Agriculture, Ecosystems and Environment, 2018, 265, 392-401.	5.3	49
36	Estimating the spatial means and variability of root-zone soil moisture in gullies using measurements from nearby uplands. Journal of Hydrology, 2013, 476, 28-41.	5.4	43

#	Article	IF	CITATIONS
37	Soil properties of apple orchards on China's Loess Plateau. Science of the Total Environment, 2020, 723, 138041.	8.0	42
38	Age- and climate- related water use patterns of apple trees on China's Loess Plateau. Journal of Hydrology, 2020, 582, 124462.	5.4	41
39	Drought responses of profile plant-available water and fine-root distributions in apple (Malus pumila) Tj ETQq1 I	l 0.784314 8.0	f rgBT /Over o 41
40	Runoff and sediment yield under simulated rainfall on hillslopes in the Loess Plateau of China. Soil Research, 2013, 51, 50.	1.1	39
41	Assessing the spatial and temporal variation of the rainwater harvesting potential (1971-2010) on the Chinese Loess Plateau using the VIC model. Hydrological Processes, 2014, 28, 534-544.	2.6	39
42	Target areas for harmonizing the Grain for Green Programme in China's Loess Plateau. Land Degradation and Development, 2020, 31, 325-333.	3.9	37
43	The Effects of Longâ€term Fertiliser Applications on Soil Organic Carbon and Hydraulic Properties of a Loess Soil in China. Land Degradation and Development, 2016, 27, 60-67.	3.9	36
44	Effects of varied water regimes on root development and its relations with soil water under wheat/maize intercropping system. Plant and Soil, 2019, 439, 113-130.	3.7	36
45	Global synthesis of the impact of droughts on crops' water-use efficiency (WUE): Towards both high WUE and productivity. Agricultural Systems, 2020, 177, 102723.	6.1	34
46	Coupling evapotranspiration partitioning with water migration to identify the water consumption characteristics of wheat and maize in an intercropping system. Agricultural and Forest Meteorology, 2020, 290, 108034.	4.8	34
47	Yield, yield attributes and photosynthetic physiological characteristics of dryland wheat (Triticum) Tj ETQq $1\ 1\ 0$.784314 rg	gBT ₃ gverlock
48	The spatial and temporal evolution of the actual evapotranspiration based on the remote sensing method in the Loess Plateau. Science of the Total Environment, 2020, 708, 135111.	8.0	33
49	Spatiotemporal analysis of climate variability (1971–2010) in spring and summer on the Loess Plateau, China. Hydrological Processes, 2014, 28, 1689-1702.	2.6	32
50	Runoff features of pasture and crop slopes at different rainfall intensities, antecedent moisture contents and gradients on the Chinese Loess Plateau: A solution of rainfall simulation experiments. Catena, 2014, 119, 90-96.	5.0	31
51	Dynamics of runoff and sediment trapping performance of vegetative filter strips: Run-on experiments and modeling. Science of the Total Environment, 2017, 593-594, 54-64.	8.0	31
52	Quantification and spatially explicit driving forces of the incoordination between ecosystem service supply and social demand at a regional scale. Ecological Indicators, 2022, 137, 108764.	6.3	30
53	New problems of food security in Northwest China: A sustainability perspective. Land Degradation and Development, 2020, 31, 975-989.	3.9	28
54	The economic–environmental trade-off of growing apple trees in the drylands of China: A conceptual framework for sustainable intensification. Journal of Cleaner Production, 2021, 296, 126497.	9.3	28

#	Article	IF	CITATIONS
55	Effects of permanent ground cover on soil moisture in jujube orchards under sloping ground: A simulation study. Agricultural Water Management, 2014, 138, 68-77.	5.6	27
56	Effects of vegetation cover of natural grassland on runoff and sediment yield in loess hilly region of China. Journal of the Science of Food and Agriculture, 2014, 94, 497-503.	3.5	26
57	Water use and crop coefficient of the wheat–maize strip intercropping system for an arid region in northwestern China. Agricultural Water Management, 2015, 161, 77-85.	5.6	26
58	Effect of natural factors and management practices on agricultural water use efficiency under drought: A meta-analysis of global drylands. Journal of Hydrology, 2021, 594, 125977.	5.4	26
59	Subsurface irrigation with ceramic emitters: An effective method to improve apple yield and irrigation water use efficiency in the semiarid Loess Plateau. Agriculture, Ecosystems and Environment, 2021, 313, 107404.	5.3	26
60	A drought hazard assessment index based on the VIC–PDSI model and its application on the Loess Plateau, China. Theoretical and Applied Climatology, 2013, 114, 125-138.	2.8	25
61	Simulation Study of the Impact of Permanent Groundcover on Soil and Water Changes in Jujube Orchards on Sloping Ground. Land Degradation and Development, 2016, 27, 946-954.	3.9	25
62	Catchment-scale variability of absolute versus temporal anomaly soil moisture: Time-invariant part not always plays the leading role. Journal of Hydrology, 2015, 529, 1669-1678.	5.4	23
63	Integrating a mini catchment with mulching for soil water management in a sloping jujube orchard on the semiarid Loess Plateau of China. Solid Earth, 2016, 7, 167-175.	2.8	23
64	Meteorological drought over the Chinese Loess Plateau: 1971–2010. Natural Hazards, 2013, 67, 951-961.	3.4	21
65	Recovery growth and water use of intercropped maize following wheat harvest in wheat/maize relay strip intercropping. Field Crops Research, 2020, 256, 107924.	5.1	21
66	Attribution analysis of climatic and multiple anthropogenic causes of runoff change in the Loess Plateauâ€"A caseâ€study of the Jing River Basin. Land Degradation and Development, 2020, 31, 1622-1640.	3.9	21
67	Impact of conservation practices on soil hydrothermal properties and crop water use efficiency in a dry agricultural region of the tibetan plateau. Soil and Tillage Research, 2020, 200, 104619.	5.6	20
68	Quantifying the importance of deep root water uptake for apple trees' hydrological and physiological performance in drylands. Journal of Hydrology, 2022, 606, 127471.	5.4	20
69	Effect of the fodder species canola (Brassica napus L.) and daylily (Hemerocallis fulva L.) on soil physical properties and soil water content in a rainfed orchard on the semiarid Loess Plateau, China. Plant and Soil, 2020, 453, 209-228.	3.7	19
70	Rainwater collection and infiltration (RWCI) systems promote deep soil water and organic carbon restoration in water-limited sloping orchards. Agricultural Water Management, 2020, 242, 106400.	5.6	19
71	The tradeoff between soil erosion protection and water consumption in revegetation: Evaluation of new indicators and influencing factors. Geoderma, 2019, 347, 32-39.	5.1	18
72	Seasonal effects of intercropping on tree water use strategies in semiarid plantations: Evidence from natural and labelling stable isotopes. Plant and Soil, 2020, 453, 229-243.	3.7	18

#	Article	IF	Citations
73	Effects of soil managements on surface runoff and soil water content in jujube orchard under simulated rainfalls. Catena, 2015, 135, 193-201.	5.0	17
74	Statistical analyses and controls of root-zone soil moisture in a large gully of the Loess Plateau. Environmental Earth Sciences, 2014, 71, 4801-4809.	2.7	16
75	Effect of plant cover type on soil water budget and tree photosynthesis in jujube orchards. Agricultural Water Management, 2017, 184, 135-144.	5.6	15
76	Testing of observation operators designed to estimate profile soil moisture from surface measurements. Hydrological Processes, 2019, 33, 575-584.	2.6	15
77	Estimating soil moisture in gullies from adjacent upland measurements through different observation operators. Journal of Hydrology, 2013, 486, 420-429.	5.4	14
78	Application Rate Influences the Soil and Water Conservation Effectiveness of Mulching with Chipped Branches. Soil Science Society of America Journal, 2018, 82, 447-454.	2.2	12
79	Impact of land management practices on water use strategy for a dryland tree plantation and subsequent responses to drought. Land Degradation and Development, 2021, 32, 439-452.	3.9	12
80	Measurements and modeling of hydrological responses to summer pruning in dryland apple orchards. Journal of Hydrology, 2021, 594, 125651.	5.4	12
81	Changes in key driving forces of soil erosion in the Middle Yellow River Basin: vegetation and climate. Natural Hazards, 2014, 70, 957-968.	3.4	11
82	Land Use Affects Soil Moisture Response to Dramatic Shortâ€term Rainfall Events in a Hillslope Catchment of the Chinese Loess Plateau. Agronomy Journal, 2019, 111, 1506-1515.	1.8	11
83	Water-use patterns of Chinese wolfberry (Lycium barbarum L.) on the Tibetan Plateau. Agricultural Water Management, 2021, 255, 107010.	5.6	11
84	A new solution of high-efficiency rainwater irrigation mode for water management in apple plantation: Design and application. Agricultural Water Management, 2022, 259, 107243.	5.6	10
85	Revegetation modifies patterns of temporal soil respiration responses to extreme-drying-and-rewetting in a semiarid ecosystem. Plant and Soil, 2018, 433, 227-241.	3.7	9
86	Ecohydrological advantage of young apple tree-based agroforestry and its response to extreme droughts on the semiarid Loess Plateau. Agricultural and Forest Meteorology, 2022, 321, 108969.	4.8	9
87	Mulching Measures Improve Soil Moisture in Rain-Fed Jujube (Ziziphus jujuba Mill.) Orchards in the Loess Hilly Region of China. Sustainability, 2021, 13, 610.	3.2	8
88	Study on Water Suitability of Apple Plantations in the Loess Plateau under Climate Change. International Journal of Environmental Research and Public Health, 2018, 15, 2504.	2.6	7
89	Vegetative filter strips—Effect of vegetation type and shape of strip on runâ€off and sediment trapping. Land Degradation and Development, 2018, 29, 3917-3927.	3.9	7
90	Intra-storm time stability analysis of surface soil water content. Geoderma, 2019, 352, 33-37.	5.1	7

#	Article	IF	CITATIONS
91	Water Deficit Modulates the CO2 Fertilization Effect on Plant Gas Exchange and Leaf-Level Water Use Efficiency: A Meta-Analysis. Frontiers in Plant Science, 2021, 12, 775477.	3.6	6
92	The efficiency of organic C sequestration in deep soils is enhanced by drier climates. Geoderma, 2022, 415, 115774.	5.1	6
93	Redesign of dryland apple orchards by intercropping the bioenergy crop canola (<i>Brassica napus</i>) Tj ETQq1	1 0.78431 5.6	4 rgBT /Ove
94	Land use affects the response of soil moisture and soil temperature to environmental factors in the loess hilly region of China. PeerJ, 0, 10, e13736.	2.0	6
95	Comparison of the root–soil water relationship of two typical revegetation species along a precipitation gradient on the Loess Plateau. Environmental Research Letters, 2021, 16, 064054.	5.2	5
96	Impacts of land use conversion on the response of soil respiration to precipitation in drylands: A case study with four-yearlong observations. Agricultural and Forest Meteorology, 2021, 304-305, 108426.	4.8	5
97	Dynamics of interspecific water relationship in vertical and horizontal dimensions under a dryland apple-Brassica intercropping system: Quantifying by experiments and the 3D Hi-sAFe model. Agricultural and Forest Meteorology, 2021, 310, 108620.	4.8	5
98	Vertical variation in shallow and deep soil moisture in an apple orchard in the loess hilly–gully area of north China. Soil Use and Management, 2021, 37, 595-606.	4.9	4
99	Soil hydrothermal modeling in a dry alpine agricultural zone: The effect of soil airflow. Geoderma, 2021, 402, 115354.	5.1	4
100	Impacts of Interspecific Interactions on Crop Growth and Yield in Wheat (Triticum aestivum L.)/Maize (Zea mays L.) Strip Intercropping under Different Water and Nitrogen Levels. Agronomy, 2022, 12, 951.	3.0	4
101	Evaluation of Soil Water Availability (SWA) Based on Hydrological Modelling in Arid and Semi-Arid Areas: A Case Study in Handan City, China. Water (Switzerland), 2016, 8, 360.	2.7	3
102	Sloping Land Use Affects Soil Moisture and Temperature in the Loess Hilly Region of China. Agronomy, 2020, 10, 774.	3.0	2
103	An In-Situ Rainwater Collection and Infiltration System to Improve Plant-Available Water and Fine Root Growth for Drought Resistance. Applied Engineering in Agriculture, 2020, 36, 807-814.	0.7	1
104	Sloping land use affects the complexity of soil moisture and temperature changes in the loess hilly region of China. PLoS ONE, 2022, 17, e0262445.	2.5	1