Jean E Schaffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4767530/publications.pdf

Version: 2024-02-01

101543 128289 8,121 63 36 60 citations g-index h-index papers 65 65 65 10630 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3077-3082.	7.1	1,622
2	Lipotoxicity: when tissues overeat. Current Opinion in Lipidology, 2003, 14, 281-287.	2.7	761
3	A novel mouse model of lipotoxic cardiomyopathy. Journal of Clinical Investigation, 2001, 107, 813-822.	8.2	666
4	Palmitate-induced Apoptosis Can Occur through a Ceramide-independent Pathway. Journal of Biological Chemistry, 2001, 276, 14890-14895.	3.4	512
5	Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. Journal of Lipid Research, 2006, 47, 2726-2737.	4.2	472
6	Transgenic Expression of Fatty Acid Transport Protein 1 in the Heart Causes Lipotoxic Cardiomyopathy. Circulation Research, 2005, 96, 225-233.	4.5	394
7	Cholesterol Oxidation Products Are Sensitive and Specific Blood-Based Biomarkers for Niemann-Pick C1 Disease. Science Translational Medicine, 2010, 2, 56ra81.	12.4	302
8	As a Matter of Fat. Cell Metabolism, 2009, 10, 9-12.	16.2	237
9	A sensitive and specific LC-MS/MS method for rapid diagnosis of Niemann-Pick C1 disease from human plasma. Journal of Lipid Research, 2011, 52, 1435-1445.	4.2	230
10	Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission. Circulation Research, 2018, 122, 58-73.	4.5	225
11	Small Nucleolar RNAs U32a, U33, and U35a Are Critical Mediators of Metabolic Stress. Cell Metabolism, 2011, 14, 33-44.	16.2	207
12	DGAT1 Expression Increases Heart Triglyceride Content but Ameliorates Lipotoxicity. Journal of Biological Chemistry, 2009, 284, 36312-36323.	3.4	198
13	Fatty acid transport: the roads taken. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E239-E246.	3.5	144
14	Hyperleptinemia prevents lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13624-13629.	7.1	133
15	A Critical Role for Eukaryotic Elongation Factor 1A-1 in Lipotoxic Cell Death. Molecular Biology of the Cell, 2006, 17, 770-778.	2.1	128
16	Ceramide Remodeling and Risk of Cardiovascular Events and Mortality. Journal of the American Heart Association, 2018, 7, .	3.7	113
17	Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology, 2017, 65, 1543-1556.	7.3	110
18	A Murine Niemann-Pick C1 I1061T Knock-In Model Recapitulates the Pathological Features of the Most Prevalent Human Disease Allele. Journal of Neuroscience, 2015, 35, 8091-8106.	3.6	97

#	Article	IF	CITATIONS
19	Lipotoxicity in the heart. Current Hypertension Reports, 2005, 7, 412-417.	3.5	92
20	Development of a bile acid–based newborn screen for Niemann-Pick disease type C. Science Translational Medicine, 2016, 8, 337ra63.	12.4	89
21	Effects of Inhibiting VPS4 Support a General Role for ESCRTs in Extracellular Vesicle Biogenesis. Biophysical Journal, 2017, 113, 1342-1352.	0.5	78
22	Manifestations and mechanisms of myocardial lipotoxicity in obesity. Journal of Internal Medicine, 2018, 284, 478-491.	6.0	78
23	Rpl13a small nucleolar RNAs regulate systemic glucose metabolism. Journal of Clinical Investigation, 2016, 126, 4616-4625.	8.2	78
24	The Non-coding RNA gadd7 Is a Regulator of Lipid-induced Oxidative and Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2009, 284, 7446-7454.	3.4	76
25	Cytosolic Accumulation of Small Nucleolar RNAs (snoRNAs) Is Dynamically Regulated by NADPH Oxidase. Journal of Biological Chemistry, 2015, 290, 11741-11748.	3.4	70
26	\hat{l}_{\pm} -Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice. Biochemical and Biophysical Research Communications, 2006, 344, 446-452.	2.1	69
27	Bariatric Surgery–Induced Cardiac and Lipidomic Changes in Obesityâ€Related Heart Failure with Preserved Ejection Fraction. Obesity, 2018, 26, 284-290.	3.0	68
28	A validated LC-MS/MS assay for quantification of 24(S)-hydroxycholesterol in plasma and cerebrospinal fluid. Journal of Lipid Research, 2015, 56, 1222-1233.	4.2	54
29	Box C/D Small Nucleolar RNA (snoRNA) U60 Regulates Intracellular Cholesterol Trafficking. Journal of Biological Chemistry, 2013, 288, 35703-35713.	3.4	52
30	Mitochondrial remodeling in mice with cardiomyocyte-specific lipid overload. Journal of Molecular and Cellular Cardiology, 2015, 79, 275-283.	1.9	52
31	TLR4 Activation Under Lipotoxic Conditions Leads to Synergistic Macrophage Cell Death through a TRIF-Dependent Pathway. Journal of Immunology, 2013, 190, 1285-1296.	0.8	49
32	snoRNA U17 Regulates Cellular Cholesterol Trafficking. Cell Metabolism, 2015, 21, 855-867.	16.2	49
33	Lipotoxicity: Many Roads to Cell Dysfunction and Cell Death: Introduction to a Thematic Review Series. Journal of Lipid Research, 2016, 57, 1327-1328.	4.2	48
34	Long-range function of secreted small nucleolar RNAs that direct 2′-O-methylation. Journal of Biological Chemistry, 2018, 293, 13284-13296.	3.4	48
35	Macrophages modulate cardiac function in lipotoxic cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1366-H1373.	3.2	39
36	A Diet Rich in Medium-Chain Fatty Acids Improves Systolic Function and Alters the Lipidomic Profile in Patients With Type 2 Diabetes: A Pilot Study. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 504-512.	3.6	39

#	Article	IF	Citations
37	Cholesterol homeostatic responses provide biomarkers for monitoring treatment for the neurodegenerative disease Niemann–Pick C1 (NPC1). Human Molecular Genetics, 2014, 23, 6022-6033.	2.9	36
38	N-acyl-O-phosphocholineserines: structures of a novel class of lipids that are biomarkers for Niemann-Pick C1 disease. Journal of Lipid Research, 2019, 60, 1410-1424.	4.2	31
39	RNASET2 is required for ROS propagation during oxidative stress-mediated cell death. Cell Death and Differentiation, 2016, 23, 347-357.	11.2	28
40	Monitoring the itinerary of lysosomal cholesterol in Niemann-Pick Type C1-deficient cells after cyclodextrin treatment. Journal of Lipid Research, 2020, 61, 403-412.	4.2	28
41	Development and validation of LC-MS/MS method for determination of very long acyl chain (C22:0 and) Tj ETQq1	1 _{3.7} 78431	4 rgBT /C∨ 26
42	Circulating ceramide ratios and risk of vascular brain aging and dementia. Annals of Clinical and Translational Neurology, 2020, 7, 160-168.	3.7	25
43	Application of N-palmitoyl-O-phosphocholineserine for diagnosis and assessment of response to treatment in Niemann-Pick type C disease. Molecular Genetics and Metabolism, 2020, 129, 292-302.	1.1	24
44	Diabetic Cardiovascular Disease: Getting to the Heart of the Matter. Journal of Cardiovascular Translational Research, 2012, 5, 436-445.	2.4	23
45	SmD3 Regulates Intronic Noncoding RNA Biogenesis. Molecular and Cellular Biology, 2012, 32, 4092-4103.	2.3	21
46	Diagnosis of niemann-pick C1 by measurement of bile acid biomarkers in archived newborn dried blood spots. Molecular Genetics and Metabolism, 2019, 126, 183-187.	1.1	21
47	Nuclear export factor 3 regulates localization of small nucleolar RNAs. Journal of Biological Chemistry, 2017, 292, 20228-20239.	3.4	19
48	2-Hydroxypropyl- $\hat{1}^2$ -cyclodextrin is the active component in a triple combination formulation for treatment of Niemann-Pick C1 disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1545-1561.	2.4	19
49	Death by lipids: The role of small nucleolar RNAs in metabolic stress. Journal of Biological Chemistry, 2020, 295, 8628-8635.	3.4	19
50	RNA Regulation of Lipotoxicity and Metabolic Stress. Diabetes, 2016, 65, 1816-1823.	0.6	17
51	Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis. Nature Communications, 2021, 12, 5214.	12.8	14
52	A novel adipocyte long chain fatty acid transport protein. European Journal of Medical Research, 1996, 1, 176-80.	2.2	13
53	A HILICâ€MS/MS method for simultaneous quantification of the lysosomal disease markers galactosylsphingosine and glucosylsphingosine in mouse serum. Biomedical Chromatography, 2018, 32, e4235.	1.7	12
54	Synthesis and characterization of diazirine alkyne probes for the study of intracellular cholesterol trafficking. Journal of Lipid Research, 2019, 60, 707-716.	4.2	12

#	Article	IF	Citations
55	A novel intrinsically fluorescent probe for study of uptake and trafficking of 25-hydroxycholesterol. Journal of Lipid Research, 2015, 56, 2408-2419.	4.2	11
56	Alterations in plasma triglycerides and ceramides: links with cardiac function in humans with type 2 diabetes. Journal of Lipid Research, 2020, 61, 1065-1074.	4.2	11
57	Application of a glycinated bile acid biomarker for diagnosis and assessment of response to treatment in Niemann-pick disease type C1. Molecular Genetics and Metabolism, 2020, 131, 405-417.	1.1	11
58	Genetic Architecture of Circulating Very-Long-Chain (C24:0 and C22:0) Ceramide Concentrations. Journal of Lipid and Atherosclerosis, 2020, 9, 172.	3.5	10
59	Quantitative Analysis of the Magnitude and Time Delay of Cyclic Variation of Myocardial Backscatter from Asymptomatic Type 2 Diabetes Mellitus Subjects. Ultrasound in Medicine and Biology, 2009, 35, 1458-1467.	1.5	8
60	Bayesian Parameter Estimation for Characterizing the Cyclic Variation of Echocardiographic Backscatter to Assess the Hearts of Asymptomatic Type 2 Diabetes Mellitus Subjects. Ultrasound in Medicine and Biology, 2011, 37, 805-812.	1.5	3
61	Role and Function of FATPs in Fatty Acid Uptake. , 0, , 31-38.		O
62	The nonâ€coding RNA gadd7 is a regulator of lipotoxicâ€induced ROS and ER stress. FASEB Journal, 2008, 22, 1034.1.	0.5	0
63	Lipidâ€mediated ER stress. FASEB Journal, 2008, 22, 410.1.	0.5	O