List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4767427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coherent dissipative soliton intermittency in ultrafast fiber lasers. Chinese Optics Letters, 2022, 20, 011401.	2.9	6
2	Ultrafast all-anomalous-dispersion Er-doped large-mode-area fiber lasers. Optics and Laser Technology, 2022, 148, 107783.	4.6	8
3	Phase-matching-induced near-chirp-free solitons in normal-dispersion fiber lasers. Light: Science and Applications, 2022, 11, 25.	16.6	39
4	Internal dynamics in bound states of unequal solitons. Optics Letters, 2022, 47, 1618.	3.3	7
5	Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electronic Advances, 2022, 5, 200098-200098.	13.3	54
6	Synchronous and asynchronous pulsating dual solitons in lasers. Optics Letters, 2022, 47, 3323.	3.3	6
7	Soliton metamorphosis dynamics in ultrafast fiber lasers. Physical Review A, 2021, 103, .	2.5	10
8	Formation and statistical properties of rogue wave in dispersion-managed fiber lasers. Physical Review A, 2021, 103, .	2.5	10
9	Trampolinelike pulsating soliton fiber lasers. Physical Review A, 2021, 104, .	2.5	11
10	Morphology-Controllable Ultrafast Fiber Lasers Based on Intracavity Manipulation of Transverse Modes. Physical Review Applied, 2021, 16, .	3.8	9
11	Narrowband Mode-Locked Fiber Laser via Spectral-Domain Intermodal Interference. Journal of Lightwave Technology, 2021, 39, 6276-6280.	4.6	9
12	Generation of polarization and phase singular beams in fibers and fiber lasers. Advanced Photonics, 2021, 3, .	11.8	89
13	Stable loosely bounded asymmetric soliton molecules in fiber lasers. Physical Review A, 2021, 104, .	2.5	11
14	Periodic attraction and repulsion within the tight-bound π-phase soliton molecule. Optics Letters, 2021, 46, 5599.	3.3	7
15	Synchronized multi-wavelength soliton fiber laser via intracavity group delay modulation. Nature Communications, 2021, 12, 6712.	12.8	67
16	Integration of topological insulator nanogap with atomic single layer for boosting photoluminescence. Optical Materials, 2021, 122, 111786.	3.6	2
17	Physical vapor deposition of large-scale PbSe films and its applications in pulsed fiber lasers. Nanophotonics, 2020, 9, 2367-2375.	6.0	11
18	Plasmon-enhanced linear and second-order surface nonlinear optical response of silver nanoparticles fabricated using a femtosecond pulse. Nanotechnology, 2020, 31, 035305.	2.6	7

#	Article	IF	CITATIONS
19	Intracavity frequency doubling based on BBO crystals in a mode-locked erbium-doped fiber laser. Japanese Journal of Applied Physics, 2020, 59, 080902.	1.5	2
20	Magnetic plasmon resonances in nanostructured topological insulators for strongly enhanced light–MoS2 interactions. Light: Science and Applications, 2020, 9, 191.	16.6	52
21	Selective Remote-Excitation of Gap Mode in Metallic Nanowire-Nanoparticle System Using Chiral Surface Plasmon Polaritons. IEEE Journal of Quantum Electronics, 2020, 56, 1-6.	1.9	9
22	Formation and Evolution of Soliton in Two-Mode Fiber Laser. IEEE Photonics Journal, 2020, 12, 1-8.	2.0	3
23	High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light: Science and Applications, 2020, 9, 63.	16.6	44
24	Plasmon-enhanced nonlinear nanofocusing of gold nanoprisms driven <i>via</i> an ultrafast azimuthal vector beam. Nanoscale, 2020, 12, 7045-7050.	5.6	4
25	Lab on D-shaped fiber excited via azimuthally polarized vector beam for surface-enhanced Raman spectroscopy. Optics Express, 2020, 28, 12071.	3.4	8
26	Graphene-tuned EIT-like effect in photonic multilayers for actively controlled light absorption of topological insulators. Optics Express, 2020, 28, 31893.	3.4	18
27	Recent progress of pulsed fiber lasers based on transition-metal dichalcogenides and black phosphorus saturable absorbers. Nanophotonics, 2020, 9, 2215-2231.	6.0	58
28	Surface-Enhanced Raman Spectroscopy Based on a Silver-Film Semi-Coated Nanosphere Array. Sensors, 2019, 19, 3966.	3.8	15
29	Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring. Nanoscale, 2019, 11, 4759-4766.	5.6	52
30	Optical vortex fiber laser based on modulation of transverse modes in two mode fiber. APL Photonics, 2019, 4, .	5.7	20
31	Dynamic manipulation of optical chirality for gammadion nanostructures. Applied Physics Express, 2019, 12, 072015.	2.4	3
32	Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach. Nanophotonics, 2019, 8, 921-929.	6.0	27
33	Topological insulator based Tamm plasmon polaritons. APL Photonics, 2019, 4, .	5.7	40
34	A pulsewidth measurement technology based on carbon-nanotube saturable absorber. Optics Express, 2019, 27, 4188.	3.4	10
35	Induced reflection in Tamm plasmon systems. Optics Express, 2019, 27, 5383.	3.4	45
36	All-fiber frequency shifter consisting of a fiber Bragg grating modulated via an acoustic flexural wave for optical heterodyne measurement. Optics Letters, 2019, 44, 3725.	3.3	6

#	Article	IF	CITATIONS
37	Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy. Photonics Research, 2019, 7, 526.	7.0	23
38	Azimuthal vector beam exciting silver triangular nanoprisms for increasing the performance of surface-enhanced Raman spectroscopy. Photonics Research, 2019, 7, 1447.	7.0	13
39	Electrostatic Functionalization and Passivation of Water-Exfoliated Few-Layer Black Phosphorus by Poly Dimethyldiallyl Ammonium Chloride and Its Ultrafast Laser Application. ACS Applied Materials & Interfaces, 2018, 10, 9679-9687.	8.0	57
40	Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse. Nanotechnology, 2018, 29, 205301.	2.6	21
41	Flexibly tunable high-quality-factor induced transparency in plasmonic systems. Scientific Reports, 2018, 8, 1558.	3.3	65
42	Stable high-power saturable absorber based on polymer-black-phosphorus films. Optics Communications, 2018, 406, 254-259.	2.1	45
43	Passively Q-Switched and Mode-Locked Fiber Laser Based on an ReS2 Saturable Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-6.	2.9	144
44	Tunable-wavelength picosecond vortex generation in fiber and its application in frequency-doubled vortex. Journal of Optics (United Kingdom), 2018, 20, 014004.	2.2	6
45	Broadband polarization-insensitive saturable absorption of Fe ₂ O ₃ nanoparticles. Nanoscale, 2018, 10, 21219-21224.	5.6	51
46	Coupling-induced spectral splitting for plasmonic sensing with ultra-high figure of merit. Chinese Physics B, 2018, 27, 117302.	1.4	5
47	Ultrafast Lasers: Graphene Actively Mode-Locked Lasers (Adv. Funct. Mater. 28/2018). Advanced Functional Materials, 2018, 28, 1870194.	14.9	6
48	Graphene Actively Mode‣ocked Lasers. Advanced Functional Materials, 2018, 28, 1801539.	14.9	39
49	All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers. Optics Letters, 2018, 43, 1590.	3.3	35
50	Plasmonic Fano spectral response from graphene metasurfaces in the MIR region. Optical Materials Express, 2018, 8, 1058.	3.0	30
51	Linear-cavity cylindrical vector lasers based on all-fiber mode converters. Optics Communications, 2018, 427, 306-310.	2.1	4
52	All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating. Journal of Optics (United Kingdom), 2018, 20, 075608.	2.2	10
53	Femtosecond Passively Er-Doped Mode-Locked Fiber Laser With WS2 Solution Saturable Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 44-49.	2.9	53
54	Ultrafast all-fiber based cylindrical-vector beam laser. Applied Physics Letters, 2017, 110, .	3.3	69

#	Article	IF	CITATIONS
55	MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery. Sensors and Actuators B: Chemical, 2017, 251, 180-184.	7.8	146
56	Multi-Parameter Sensing Using a Fiber Bragg Grating Inscribed in Dual-Mode Fiber. IEEE Photonics Technology Letters, 2017, 29, 1607-1610.	2.5	21
57	Optical Heterodyne Microvibration Detection Based on All-Fiber Acousto-Optic Superlattice Modulation. Journal of Lightwave Technology, 2017, 35, 3821-3824.	4.6	13
58	Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions. Optics Express, 2017, 25, 2733.	3.4	53
59	Strong plasmonic confinement and optical force in phosphorene pairs. Optics Express, 2017, 25, 5255.	3.4	65
60	Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures. Optics Express, 2017, 25, 21630.	3.4	106
61	Passively Q-switched Nd:YVO_4 laser based on Fe_3O_4 nanoparticles saturable absorber. Optical Materials Express, 2017, 7, 2913.	3.0	28
62	Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides. Photonics Research, 2017, 5, 162.	7.0	105
63	Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles. Photonics Research, 2017, 5, 52.	7.0	53
64	Generation of femtosecond optical vortex pulse in fiber based on an acoustically induced fiber grating. Optics Letters, 2017, 42, 454.	3.3	36
65	Investigation of magneto-induced linear dichroism of magnetic fluid. Applied Optics, 2017, 56, 739.	2.1	3
66	High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion. Optics Letters, 2016, 41, 5082.	3.3	87
67	A Filmy Black-Phosphorus Polyimide Saturable Absorber for Q-Switched Operation in an Erbium-Doped Fiber Laser. Materials, 2016, 9, 917.	2.9	20
68	Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating. Optics Express, 2016, 24, 19278.	3.4	78
69	Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons. Optics Letters, 2016, 41, 4743.	3.3	119
70	All-optical control of microfiber resonator by graphene's photothermal effect. Applied Physics Letters, 2016, 108, .	3.3	81
71	Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave. Optics Express, 2016, 24, 10376.	3.4	73
72	Refractometer probe based on a reflective carbon nanotube-modified microfiber Bragg grating. Applied Optics, 2016, 55, 7037.	2.1	11

#	Article	IF	CITATIONS
73	Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Scientific Reports, 2016, 6, 23583.	3.3	168
74	Nonlinear Saturable Absorption of Liquidâ€Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets. Small, 2016, 12, 1489-1497.	10.0	211
75	Carbon nanotube-deposited tilted fiber Bragg grating for refractive index and temperature sensing. IEEE Photonics Technology Letters, 2016, , 1-1.	2.5	5
76	WS_2 saturable absorber for dissipative soliton mode locking at 106 and 155 µm. Optics Express, 2015, 23, 27509.	3.4	187
77	WS_2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser. Optics Express, 2015, 23, 28698.	3.4	66
78	<italic>In-Situ</italic> Monitoring Method for Solution Volatilization Using Tilted Fiber Bragg Grating. IEEE Sensors Journal, 2015, 15, 3000-3003.	4.7	4
79	WS2 mode-locked ultrafast fiber laser. Scientific Reports, 2015, 5, 7965.	3.3	406
80	Harmonic mode locking of bound-state solitons fiber laser based on MoS_2 saturable absorber. Optics Express, 2015, 23, 205.	3.4	127
81	Soliton fiber laser mode locked with two types of film-based Bi_2Te_3 saturable absorbers. Photonics Research, 2015, 3, A43.	7.0	73
82	Optical heterodyne micro-vibration measurement based on all-fiber acousto-optic frequency shifter. Optics Express, 2015, 23, 17576.	3.4	30
83	Graphene-assisted all-fiber phase shifter and switching. Optica, 2015, 2, 468.	9.3	183
84	Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region. Optics Letters, 2015, 40, 3994.	3.3	53
85	All-Fiber Tunable Ring Laser Based on an Acousto-Optic Tunable Coupler. , 2015, , .		1
86	Pulse-state Switchable Fiber Laser Mode-locked by Carbon Nanotubes. IEEE Photonics Technology Letters, 2014, , 1-1.	2.5	8
87	Flexible high-repetition-rate ultrafast fiber laser. Scientific Reports, 2013, 3, 3223.	3.3	106
88	Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes. Scientific Reports, 2013, 3, 2718.	3.3	280
89	A nonuniform-polarization high-energy ultra-broadband laser with a long erbium-doped fiber. Laser Physics, 2013, 23, 035104.	1.2	0
90	Compact all-fiber laser delivering conventional and dissipative solitons. Optics Letters, 2013, 38, 3190.	3.3	60

#	Article	IF	CITATIONS
91	Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser. Optics Express, 2012, 20, 20992.	3.4	112
92	Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2819.	2.1	42
93	Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Optics Letters, 2012, 37, 3780.	3.3	357
94	Observation of pulse trapping in a near-zero dispersion regime. Optics Letters, 2012, 37, 2619.	3.3	92
95	Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser. Optics Express, 2012, 20, 265.	3.4	186
96	Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology, 2012, 23, 444003.	2.6	118
97	Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Physical Review A, 2012, 85, .	2.5	297
98	Recent progress in investigation and application of dissipative soliton in fiber lasers. Chinese Science Bulletin, 2012, 57, 3039-3054.	0.7	2
99	Analysis of nanoplasmonic wavelength demultiplexing based on metal-insulator-metal waveguides. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1616.	2.1	51
100	Optical bistability in metal–insulator–metal plasmonic Bragg waveguides with Kerr nonlinear defects. Applied Optics, 2011, 50, 1307.	2.1	32
101	Experimental investigation of high-energy wave-breaking-free-pulse generation in bidirectional-pumping all-fiber laser. Applied Optics, 2011, 50, 1465.	2.1	3
102	Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Optics Express, 2011, 19, 2910.	3.4	287
103	Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Optics Express, 2011, 19, 3513.	3.4	220
104	Dual-wavelength step-like pulses in an ultra-large negative-dispersion fiber laser. Optics Express, 2011, 19, 3996.	3.4	56
105	Observations of four types of pulses in a fiber laser with large net-normal dispersion. Optics Express, 2011, 19, 7616.	3.4	89
106	Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities. Optics Express, 2011, 19, 12885.	3.4	94
107	Coexistence of unequal pulses in a normal dispersion fiber laser. Optics Express, 2011, 19, 16303.	3.4	18
108	Induced transparency in nanoscale plasmonic resonator systems. Optics Letters, 2011, 36, 3233.	3.3	176

#	Article	IF	CITATIONS
109	Multi-channel plasmonic waveguide filters with disk-shaped nanocavities. Optics Communications, 2011, 284, 2613-2616.	2.1	58
110	Second-harmonic generation from metal-film nanohole arrays. Applied Optics, 2010, 49, 2347.	2.1	10
111	Transitional and steady mode-locking evolution of dissipative solitons. Applied Optics, 2010, 49, 2665.	2.1	27
112	Experimental investigation of square dissipative soliton generation and propagation. Applied Optics, 2010, 49, 4751.	2.1	7
113	Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Optics Express, 2010, 18, 17922.	3.4	261
114	Generation and amplification of high-energy nanosecond pulses in a compact all-fiber laser. Optics Express, 2010, 18, 23024.	3.4	84
115	Second-harmonic generation from a periodic array of noncentrosymmetric nanoholes. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 2405.	2.1	18
116	Passive harmonic mode-locking of a fiber laser at controllable repetition rates from fundamental to eighth-order harmonic operation. Journal of Modern Optics, 2010, 57, 1635-1639.	1.3	10