Sabine Hoves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4767075/publications.pdf

Version: 2024-02-01

257450 434195 4,990 31 24 31 citations h-index g-index papers 33 33 33 9177 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Macrophage depletion induces edema through release of matrix-degrading proteases and proteoglycan deposition. Science Translational Medicine, 2021, 13, .	12.4	24
2	Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 541-551.	7.1	66
3	Phase Ib study of anti-CSF-1R antibody emactuzumab in combination with CD40 agonist selicrelumab in advanced solid tumor patients. , 2020, 8, e001153.		37
4	Characterizing responsive and refractory orthotopic mouse models of hepatocellular carcinoma in cancer immunotherapy. PLoS ONE, 2019, 14, e0219517.	2.5	11
5	Sorafenib Induces Pyroptosis in Macrophages and Triggers Natural Killer Cell–Mediated Cytotoxicity Against Hepatocellular Carcinoma. Hepatology, 2019, 70, 1280-1297.	7. 3	126
6	T cell–induced CSF1 promotes melanoma resistance to PD1 blockade. Science Translational Medicine, 2018, 10, .	12.4	229
7	Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. Journal of Experimental Medicine, 2018, 215, 859-876.	8.5	150
8	A drug development perspective on targeting tumorâ€associated myeloid cells. FEBS Journal, 2018, 285, 763-776.	4.7	31
9	Chemotherapy Combines Effectively with Anti–PD-L1 Treatment and Can Augment Antitumor Responses. Journal of Immunology, 2018, 201, 2273-2286.	0.8	38
10	T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells. Cancer Cell, 2016, 30, 377-390.	16.8	141
11	Suppression of microRNA activity amplifies IFN- \hat{l}^3 -induced macrophage activation and promotes anti-tumour immunity. Nature Cell Biology, 2016, 18, 790-802.	10.3	214
12	CSF-1/CSF-1R targeting agents in clinical development for cancer therapy. Current Opinion in Pharmacology, 2015, 23, 45-51.	3.5	107
13	Targeting tumor-associated macrophages in cancer therapy and understanding their complexity. Oncolmmunology, 2014, 3, e955356.	4.6	27
14	Targeting Tumor-Associated Macrophages with Anti-CSF-1R Antibody Reveals a Strategy for Cancer Therapy. Cancer Cell, 2014, 25, 846-859.	16.8	1,033
15	Therapeutic Efficacy of Bifunctional siRNA Combining TGF- \hat{l}^21 Silencing with RIG-I Activation in Pancreatic Cancer. Cancer Research, 2013, 73, 1709-1720.	0.9	130
16	A novel role for granzymes in anti-tumor immunity. Oncolmmunology, 2012, 1, 219-221.	4.6	10
17	Alloantigen specific deletion of primary human T cells by Fas ligand (CD95L)â€transduced monocyteâ€derived killerâ€dendritic cells. Immunology, 2011, 133, 115-122.	4.4	5
18	Quantitative profiling of tryptophan metabolites in serum, urine, and cell culture supernatants by liquid chromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2011, 401, 3249-3261.	3.7	130

#	Article	IF	CITATION
19	ISCOMATRIX Adjuvant Combines Immune Activation with Antigen Delivery to Dendritic Cells In Vivo Leading to Effective Cross-Priming of CD8+ T Cells. Journal of Immunology, 2011, 187, 55-63.	0.8	105
20	A Critical Role for Granzymes in Antigen Cross-Presentation through Regulating Phagocytosis of Killed Tumor Cells. Journal of Immunology, 2011, 187, 1166-1175.	0.8	24
21	Presentation of tumour antigens by dendritic cells and challenges faced. Current Opinion in Immunology, 2010, 22, 137-144.	5.5	42
22	Human and mouse perforin are processed in part through cleavage by the lysosomal cysteine proteinase cathepsin L. Immunology, 2010, 131, 257-267.	4.4	44
23	The battlefield of perforin/granzyme cell death pathways. Journal of Leukocyte Biology, 2010, 87, 237-243.	3.3	67
24	A new flow cytometric assay for the simultaneous analysis of antigen-specific elimination of T cells in heterogenous T cell populations. Journal of Immunological Methods, 2009, 344, 98-108.	1.4	9
25	Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood, 2007, 109, 3812-3819.	1.4	1,361
26	Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood, 2006, 107, 2013-2021.	1.4	541
27	Monocyte-Derived Human Macrophages Mediate Anergy in Allogeneic T Cells and Induce Regulatory T Cells. Journal of Immunology, 2006, 177, 2691-2698.	0.8	54
28	Effects of social stress on blood leukocyte distribution: the role of \hat{l}_{\pm} - and \hat{l}^2 -adrenergic mechanisms. Journal of Neuroimmunology, 2004, 156, 153-162.	2.3	110
29	Elimination of activated but not resting primary human CD4 and CD8 T cells by Fas ligand (FasL/CD95L)-expressing Killer-dendritic cells. Immunobiology, 2004, 208, 463-475.	1.9	25
30	The JAM-assay: optimized conditions to determine death-receptor-mediated apoptosis. Methods, 2003, 31, 127-134.	3.8	15
31	Mature But Not Immature Fas Ligand (CD95L)-Transduced Human Monocyte-Derived Dendritic Cells Are Protected from Fas-Mediated Apoptosis and Can Be Used as Killer APC. Journal of Immunology, 2003, 170, 5406-5413.	0.8	36