Jonathan D G Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4766845/publications.pdf Version: 2024-02-01

352 papers	87,274 citations	⁷³³ 124 h-index	425 282 g-index
			0
395 all docs	395 docs citations	395 times ranked	47630 citing authors

#	Article	IF	CITATIONS
1	The Arabidopsis <scp><i>WRR4A</i></scp> and <scp><i>WRR4B</i></scp> paralogous <scp>NLR</scp> proteins both confer recognition of multiple <i>Albugo candida</i> effectors. New Phytologist, 2023, 237, 532-547.	3.5	7
2	An Improved Assembly of the <i>Albugo candida</i> Ac2V Genome Reveals the Expansion of the "CCG― Class of Effectors. Molecular Plant-Microbe Interactions, 2022, 35, 39-48.	1.4	6
3	Plant immune networks. Trends in Plant Science, 2022, 27, 255-273.	4.3	140
4	Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell, 2022, 34, 1447-1478.	3.1	318
5	Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nature Communications, 2022, 13, 1607.	5.8	48
6	The Ry _{sto} immune receptor recognises a broadly conserved feature of potyviral coat proteins. New Phytologist, 2022, 235, 1179-1195.	3.5	10
7	The host exocyst complex is targeted by a conserved bacterial type-III effector that promotes virulence. Plant Cell, 2022, 34, 3400-3424.	3.1	17
8	ldentification of RipAZ1 as an avirulence determinant of <i>Ralstonia solanacearum</i> in <i>Solanum americanum</i> . Molecular Plant Pathology, 2021, 22, 317-333.	2.0	15
9	A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nature Plants, 2021, 7, 198-208.	4.7	62
10	Transient reprogramming of crop plants for agronomic performance. Nature Plants, 2021, 7, 159-171.	4.7	72
11	Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 2021, 592, 110-115.	13.7	536
12	New Honorary Member of the BSPP. Plant Pathology, 2021, 70, 763-763.	1.2	0
13	Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nature Communications, 2021, 12, 3335.	5.8	112
14	Channeling plant immunity. Cell, 2021, 184, 3358-3360.	13.5	14
15	Chromatin accessibility landscapes activated by cell-surface and intracellular immune receptors. Journal of Experimental Botany, 2021, 72, 7927-7941.	2.4	14
16	Evolutionary tradeâ€offs at the Arabidopsis <i>WRR4A</i> resistance locus underpin alternate <i>Albugo candida</i> race recognition specificities. Plant Journal, 2021, 107, 1490-1502.	2.8	5
17	Evolutionarily distinct resistance proteins detect a pathogen effector through its association with different host targets. New Phytologist, 2021, 232, 1368-1381.	3.5	6
18	Autoactive Arabidopsis RPS4 alleles require partner protein RRS1-R. Plant Physiology, 2021, 185, 761-764.	2.3	7

#	Article	IF	CITATIONS
19	Perception of structurally distinct effectors by the integrated WRKY domain of a plant immune receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
20	Extreme resistance to <i>Potato virus Y</i> in potato carrying the <i>Ry</i> _{<i>sto</i>} gene is mediated by a <scp>TIR</scp> â€ <scp>NLR</scp> immune receptor. Plant Biotechnology Journal, 2020, 18, 655-667.	4.1	57
21	Highâ€resolution expression profiling of selected gene sets during plant immune activation. Plant Biotechnology Journal, 2020, 18, 1610-1619.	4.1	21
22	RNA Splicing: A Novel Pathogen Effector Target. Molecular Plant, 2020, 13, 1348.	3.9	0
23	Identification of <i>Avramr1</i> from <i>Phytophthora infestans</i> using long read and cDNA pathogenâ€enrichment sequencing (PenSeq). Molecular Plant Pathology, 2020, 21, 1502-1512.	2.0	22
24	Induced proximity of a TIR signaling domain on a plant-mammalian NLR chimera activates defense in plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18832-18839.	3.3	82
25	Two unequally redundant "helper" immune receptor families mediate Arabidopsis thaliana intracellular "sensor"Âimmune receptor functions. PLoS Biology, 2020, 18, e3000783.	2.6	125
26	The NLR-Annotator Tool Enables Annotation of the Intracellular Immune Receptor Repertoire. Plant Physiology, 2020, 183, 468-482.	2.3	147
27	Breeding a fungal gene into wheat. Science, 2020, 368, 822-823.	6.0	8
28	Plant NLRs get by with a little help from their friends. Current Opinion in Plant Biology, 2020, 56, 99-108.	3.5	70
29	Estradiol-inducible AvrRps4 expression reveals distinct properties of TIR-NLR-mediated effector-triggered immunity. Journal of Experimental Botany, 2020, 71, 2186-2197.	2.4	37
30	Phosphorylation-Regulated Activation of the Arabidopsis RRS1-R/RPS4 Immune Receptor Complex Reveals Two Distinct Effector Recognition Mechanisms. Cell Host and Microbe, 2020, 27, 769-781.e6.	5.1	50
31	Title is missing!. , 2020, 18, e3000783.		0
32	Title is missing!. , 2020, 18, e3000783.		0
33	Title is missing!. , 2020, 18, e3000783.		0
34	Title is missing!. , 2020, 18, e3000783.		0
35	Title is missing!. , 2020, 18, e3000783.		0
36	Title is missing!. , 2020, 18, e3000783.		0

3

#	Article	IF	CITATIONS
37	Using CRISPR/Cas9 genome editing in tomato to create a gibberellinâ€responsive dominant dwarf DELLA allele. Plant Biotechnology Journal, 2019, 17, 132-140.	4.1	64
38	A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Cell, 2019, 178, 1260-1272.e14.	13.5	265
39	A SWEET solution to rice blight. Nature Biotechnology, 2019, 37, 1280-1282.	9.4	20
40	The curious case of the bacterial engineer. Nature Plants, 2019, 5, 906-907.	4.7	0
41	Transgressive segregation reveals mechanisms of <i>Arabidopsis</i> immunity to <i>Brassica</i> -infecting races of white rust (<i>Albugo candida</i>). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2767-2773.	3.3	57
42	Flor-iculture: Ellis and Dodds' Illumination of Gene-for-Gene Biology. Plant Cell, 2019, 31, 1204-1205.	3.1	3
43	A pentangular plant inflammasome. Science, 2019, 364, 31-32.	6.0	28
44	Alien domains shaped the modular structure of plant NLR proteins. Genome Biology and Evolution, 2019, 11, 3466-3477.	1.1	21
45	Diverse <scp>NLR</scp> immune receptors activate defence via the <scp>RPW</scp> 8â€ <scp>NLR NRG</scp> 1. New Phytologist, 2019, 222, 966-980.	3.5	219
46	Optimization of T-DNA architecture for Cas9-mediated mutagenesis in Arabidopsis. PLoS ONE, 2019, 14, e0204778.	1.1	96
47	Albugo candida race diversity, ploidy and hostâ€associated microbes revealed using DNA sequence capture on diseased plants in the field. New Phytologist, 2019, 221, 1529-1543.	3.5	41
48	Autoimmunity and effector recognition in <i>Arabidopsis thaliana</i> can be uncoupled by mutations in the RRS1â€R immune receptor. New Phytologist, 2019, 222, 954-965.	3.5	10
49	Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. New Phytologist, 2019, 221, 1634-1648.	3.5	43
50	Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nature Biotechnology, 2019, 37, 139-143.	9.4	280
51	Pm21 from Haynaldia villosa Encodes a CC-NBS-LRR Protein Conferring Powdery Mildew Resistance in Wheat. Molecular Plant, 2018, 11, 874-878.	3.9	181
52	A downy mildew effector evades recognition by polymorphism of expression and subcellular localization. Nature Communications, 2018, 9, 5192.	5.8	40
53	Distinct modes of derepression of an <i>Arabidopsis</i> immune receptor complex by two different bacterial effectors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10218-10227.	3.3	83
54	<i>Arabidopsis</i> downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICALâ€INDUCED CELL DEATH1. New Phytologist, 2018, 220, 232-248.	3.5	51

#	Article	IF	CITATIONS
55	A workflow for simplified analysis of ATAC-cap-seq data in R. GigaScience, 2018, 7, .	3.3	6
56	The transcriptional landscape of polyploid wheat. Science, 2018, 361, .	6.0	768
57	Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .	6.0	2,424
58	Deadlier than the malate. Cell Research, 2018, 28, 609-610.	5.7	1
59	Arabidopsis late blight: infection of a nonhost plant by <i>Albugo laibachii</i> enables full colonization by <i>Phytophthora infestans</i> . Cellular Microbiology, 2017, 19, e12628.	1.1	44
60	Mis-placed Congeniality: When Pathogens Ask Their Plant Hosts for Another Drink. Developmental Cell, 2017, 40, 116-117.	3.1	2
61	Two-faced TIRs trip the immune switch. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2445-2446.	3.3	1
62	Genomic Rearrangements in <i>Arabidopsis</i> Considered as Quantitative Traits. Genetics, 2017, 205, 1425-1441.	1.2	21
63	Albugo-imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may contribute to suppression of non-host resistance to Phytophthora infestans in Arabidopsis thaliana. BMC Biology, 2017, 15, 20.	1.7	48
64	MutRenSeq: A Method for Rapid Cloning of Plant Disease Resistance Genes. Methods in Molecular Biology, 2017, 1659, 215-229.	0.4	22
65	Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis. Theoretical and Applied Genetics, 2017, 130, 1207-1222.	1.8	45
66	The highly buffered Arabidopsis immune signaling network conceals the functions of its components. PLoS Genetics, 2017, 13, e1006639.	1.5	138
67	Comparative analysis of targeted long read sequencing approaches for characterization of a plant's immune receptor repertoire. BMC Genomics, 2017, 18, 564.	1.2	51
68	Protein-protein interactions in the RPS4/RRS1 immune receptor complex. PLoS Pathogens, 2017, 13, e1006376.	2.1	103
69	Targeted capture and sequencing of gene-sized DNA molecules. BioTechniques, 2016, 61, 315-322.	0.8	48
70	Pathogen perception by NLRs in plants and animals: Parallel worlds. BioEssays, 2016, 38, 769-781.	1.2	81
71	Intracellular innate immune surveillance devices in plants and animals. Science, 2016, 354, .	6.0	834
72	Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biology, 2016, 14, 8.	1.7	293

#	Article	IF	CITATIONS
73	Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing. Nature Biotechnology, 2016, 34, 656-660.	9.4	248
74	Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnology, 2016, 34, 652-655.	9.4	383
75	A pigeonpea gene confers resistance to Asian soybean rust in soybean. Nature Biotechnology, 2016, 34, 661-665.	9.4	87
76	Characterization of a <i>JAZ7</i> activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen <i>Fusarium oxysporum</i> . Journal of Experimental Botany, 2016, 67, 2367-2386.	2.4	68
77	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	3.5	263
78	Probing formation of cargo/importinâ€Î± transport complexes in plant cells using a pathogen effector. Plant Journal, 2015, 81, 40-52.	2.8	48
79	Autoimmunity conferred by chs3-2D relies on CSA1, its adjacent TNL-encoding neighbour. Scientific Reports, 2015, 5, 8792.	1.6	47
80	Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Frontiers in Microbiology, 2015, 6, 811.	1.5	50
81	A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors. Cell, 2015, 161, 1089-1100.	13.5	454
82	Fine mapping of the Rpi-rzc1 gene conferring broad-spectrum resistance to potato late blight. European Journal of Plant Pathology, 2015, 143, 193-198.	0.8	14
83	NLR-parser: rapid annotation of plant NLR complements. Bioinformatics, 2015, 31, 1665-1667.	1.8	103
84	Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4. Nature Communications, 2015, 6, 6338.	5.8	147
85	Domestication: Sweet! A naturally transgenic crop. Nature Plants, 2015, 1, 15077.	4.7	0
86	The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 2015, 16, 413-434.	2.0	695
87	Plant immune receptors mimic pathogen virulence targets. Oncotarget, 2015, 6, 16824-16825.	0.8	4
88	Hyaloperonospora arabidopsidis (Downy Mildew) infection Assay in Arabidopsis. Bio-protocol, 2015, 5, .	0.2	11
89	Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite. ELife, 2015, 4, .	2.8	71
90	A novel approach for multi-domain and multi-gene family identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants. BMC Genomics, 2014, 15, 966.	1.2	29

#	Article	lF	CITATIONS
91	The Nuclear Immune Receptor RPS4 Is Required for RRS1SLH1-Dependent Constitutive Defense Activation in Arabidopsis thaliana. PLoS Genetics, 2014, 10, e1004655.	1.5	121
92	Expression Profiling during Arabidopsis/Downy Mildew Interaction Reveals a Highly-Expressed Effector That Attenuates Responses to Salicylic Acid. PLoS Pathogens, 2014, 10, e1004443.	2.1	117
93	The Plasmodesmal Protein PDLP1 Localises to Haustoria-Associated Membranes during Downy Mildew Infection and Regulates Callose Deposition. PLoS Pathogens, 2014, 10, e1004496.	2.1	130
94	Genomic DNA Library Preparation for Resistance Gene Enrichment and Sequencing (RenSeq) in Plants. Methods in Molecular Biology, 2014, 1127, 291-303.	0.4	24
95	Elevating crop disease resistance with cloned genes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130087.	1.8	117
96	Structural Basis for Assembly and Function of a Heterodimeric Plant Immune Receptor. Science, 2014, 344, 299-303.	6.0	300
97	A locus conferring effective late blight resistance in potato cultivar SÃjrpo Mira maps to chromosome XI. Theoretical and Applied Genetics, 2014, 127, 647-657.	1.8	28
98	Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants. Journal of Cell Biology, 2014, 205, 677-692.	2.3	78
99	Convergent Targeting of a Common Host Protein-Network by Pathogen Effectors from Three Kingdoms of Life. Cell Host and Microbe, 2014, 16, 364-375.	5.1	367
100	EXPRSS: an Illumina based high-throughput expression-profiling method to reveal transcriptional dynamics. BMC Genomics, 2014, 15, 341.	1.2	36
101	Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biology, 2014, 14, 120.	1.6	161
102	Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell, 2014, 54, 43-55.	4.5	744
103	A Golden Gate Modular Cloning Toolbox for Plants. ACS Synthetic Biology, 2014, 3, 839-843.	1.9	666
104	Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31, 691-693.	9.4	951
105	Resistance gene enrichment sequencing (<scp>R</scp> en <scp>S</scp> eq) enables reannotation of the <scp>NB</scp> â€ <scp>LRR</scp> gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant Journal, 2013, 76, 530-544.	2.8	367
106	Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold. Current Biology, 2013, 23, 1094-1100.	1.8	292
107	The Variable Domain of a Plant Calcium-dependent Protein Kinase (CDPK) Confers Subcellular Localization and Substrate Recognition for NADPH Oxidase. Journal of Biological Chemistry, 2013, 288, 14332-14340.	1.6	129
108	Deployment of the <i><scp>B</scp>urkholderia glumae</i> type <scp>III</scp> secretion system as an efficient tool for translocating pathogen effectors to monocot cells. Plant Journal, 2013, 74, 701-712.	2.8	45

#	Article	IF	CITATIONS
109	In Planta Effector Competition Assays Detect Hyaloperonospora arabidopsidis Effectors That Contribute to Virulence and Localize to Different Plant Subcellular Compartments. Molecular Plant-Microbe Interactions, 2013, 26, 745-757.	1.4	16
110	Regulation of Transcription of Nucleotide-Binding Leucine-Rich Repeat-Encoding Genes SNC1 and RPP4 via H3K4 Trimethylation. Plant Physiology, 2013, 162, 1694-1705.	2.3	93
111	A Downy Mildew Effector Attenuates Salicylic Acid–Triggered Immunity in Arabidopsis by Interacting with the Host Mediator Complex. PLoS Biology, 2013, 11, e1001732.	2.6	167
112	Crystallization and preliminary X-ray diffraction analyses of the TIR domains of three TIR–NB–LRR proteins that are involved in disease resistance in <i>Arabidopsis thaliana</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1275-1280.	0.7	5
113	Identifying and Classifying Trait Linked Polymorphisms in Non-Reference Species by Walking Coloured de Bruijn Graphs. PLoS ONE, 2013, 8, e60058.	1.1	26
114	Mechanisms of Nuclear Suppression of Host Immunity by Effectors from the Arabidopsis Downy Mildew Pathogen Hyaloperonospora arabidopsidis (Hpa). Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 285-293.	2.0	17
115	Draft Genome Sequence of Pseudomonas syringae Pathovar Syringae Strain FF5, Causal Agent of Stem Tip Dieback Disease on Ornamental Pear. Journal of Bacteriology, 2012, 194, 3733-3734.	1.0	10
116	Characterization of the membrane-associated HaRxL17Hpaeffector candidate. Plant Signaling and Behavior, 2012, 7, 145-149.	1.2	7
117	Coverageâ€based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (<i>Cicer arietinum</i> ; Fabaceae), a crop species without a reference genome. American Journal of Botany, 2012, 99, 186-192.	0.8	34
118	The <i>awr</i> Gene Family Encodes a Novel Class of <i>Ralstonia solanacearum</i> Type III Effectors Displaying Virulence and Avirulence Activities. Molecular Plant-Microbe Interactions, 2012, 25, 941-953.	1.4	66
119	Distinct regions of the <i>Pseudomonas syringae</i> coiled-coil effector AvrRps4 are required for activation of immunity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16371-16376.	3.3	81
120	Obligate biotroph parasitism: can we link genomes to lifestyles?. Trends in Plant Science, 2012, 17, 448-457.	4.3	102
121	Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics, 2012, 13, 75.	1.2	290
122	HopAS1 recognition significantly contributes to Arabidopsis nonhost resistance to <i>Pseudomonas syringae</i> pathogens. New Phytologist, 2012, 193, 58-66.	3.5	32
123	Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplastâ€associated protein HaRxL17 that confers enhanced plant susceptibility. Plant Journal, 2012, 69, 252-265.	2.8	198
124	Subcellular targeting of an evolutionarily conserved plant defensin <scp>M</scp> t <scp>D</scp> ef4.2 determines the outcome of plant–pathogen interaction in transgenic <scp>A</scp> rabidopsis. Molecular Plant Pathology, 2012, 13, 1032-1046.	2.0	29
125	Why genetically modified crops?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1807-1816.	1.6	17
126	Molecular Cloning of ATR5Emoy2 from Hyaloperonospora arabidopsidis, an Avirulence Determinant That Triggers RPP5-Mediated Defense in Arabidopsis. Molecular Plant-Microbe Interactions, 2011, 24, 827-838.	1.4	102

#	Article	IF	CITATIONS
127	The microRNA miR393 reâ€directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant Journal, 2011, 67, 218-231.	2.8	196
128	Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annual Review of Phytopathology, 2011, 49, 317-343.	3.5	1,564
129	Crystallization and preliminary X-ray analysis of the RXLR-type effector RXLR3 from the oomycete pathogenHyaloperonospora arabidopsidis. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1417-1420.	0.7	2
130	Gene Gain and Loss during Evolution of Obligate Parasitism in the White Rust Pathogen of Arabidopsis thaliana. PLoS Biology, 2011, 9, e1001094.	2.6	271
131	Multiple Candidate Effectors from the Oomycete Pathogen Hyaloperonospora arabidopsidis Suppress Host Plant Immunity. PLoS Pathogens, 2011, 7, e1002348.	2.1	212
132	Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. FEMS Microbiology Letters, 2010, 310, 182-192.	0.7	57
133	Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 2010, 465, 627-631.	13.7	1,651
134	Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology, 2010, 28, 365-369.	9.4	464
135	Signatures of Adaptation to Obligate Biotrophy in the <i>Hyaloperonospora arabidopsidis</i> Genome. Science, 2010, 330, 1549-1551.	6.0	492
136	Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using combined association and linkage mapping. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10302-10307.	3.3	120
137	Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15973-15978.	3.3	241
138	<i>Rpi-vnt1.1</i> , a <i>Tm-2²</i> Homolog from <i>Solanum venturii</i> , Confers Resistance to Potato Late Blight. Molecular Plant-Microbe Interactions, 2009, 22, 589-600.	1.4	194
139	Hormone (Dis)harmony Moulds Plant Health and Disease. Science, 2009, 324, 750-752.	6.0	416
140	Role of plant hormones in plant defence responses. Plant Molecular Biology, 2009, 69, 473-488.	2.0	2,187
141	Two distinct potato late blight resistance genes from SolanumÂberthaultii are located on chromosome 10. Euphytica, 2009, 165, 269-278.	0.6	37
142	A new resistance gene to powdery mildew identified in Solanum neorossii has been localized on the short arm of potato chromosome 6. Euphytica, 2009, 166, 331-339.	0.6	5
143	The <i>Pseudomonas syringae</i> effector protein, AvrRPS4, requires <i>in planta</i> processing and the KRVY domain to function. Plant Journal, 2009, 57, 1079-1091.	2.8	60
144	Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO Journal, 2009, 28, 3428-3438.	3.5	267

#	Article	IF	CITATIONS
145	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	13.7	1,405
146	Application of 'next-generation' sequencing technologies to microbial genetics. Nature Reviews Microbiology, 2009, 7, 96-97.	13.6	269
147	In the News. Nature Reviews Microbiology, 2009, 7, 260-261.	13.6	158
148	<i>De novo</i> assembly of the <i>Pseudomonas syringae</i> pv. <i>syringae</i> B728a genome using Illumina/Solexa short sequence reads. FEMS Microbiology Letters, 2009, 291, 103-111.	0.7	77
149	A Biotic or Abiotic Stress?. , 2009, , 103-122.		1
150	The Major Specificity-Determining Amino Acids of the Tomato Cf-9 Disease Resistance Protein Are at Hypervariable Solvent-Exposed Positions in the Central Leucine-Rich Repeats. Molecular Plant-Microbe Interactions, 2009, 22, 1203-1213.	1.4	46
151	Autophagic Components Contribute to Hypersensitive Cell Death in Arabidopsis. Cell, 2009, 137, 773-783.	13.5	348
152	Mapping and Cloning of Late Blight Resistance Genes from <i>Solanum venturii</i> Using an Interspecific Candidate Gene Approach. Molecular Plant-Microbe Interactions, 2009, 22, 601-615.	1.4	148
153	A Draft Genome Sequence of <i>Pseudomonas syringae</i> pv. <i>tomato</i> T1 Reveals a Type III Effector Repertoire Significantly Divergent from That of <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000. Molecular Plant-Microbe Interactions, 2009, 22, 52-62.	1.4	134
154	The TIR Domain of TIR-NB-LRR Resistance Proteins Is a Signaling Domain Involved in Cell Death Induction. Molecular Plant-Microbe Interactions, 2009, 22, 157-165.	1.4	185
155	Regions of the Cf-9B Disease Resistance Protein Able to Cause Spontaneous Necrosis in <i>Nicotiana benthamiana</i> Lie Within the Region Controlling Pathogen Recognition in Tomato. Molecular Plant-Microbe Interactions, 2009, 22, 1214-1226.	1.4	17
156	A new species of <l>Albugo</l> parasitic to <l>Arabidopsis thaliana</l> reveals new evolutionary patterns in white blister rusts (<l>Albuginaceae</l>). Persoonia: Molecular Phylogeny and Evolution of Fungi, 2009, 22, 123-128.	1.6	80
157	TECHNICAL ADVANCE: Induction of phenotypic variation by activation of genes harbouring a maize <i>Spm</i> element in their promoter regions using a TnpA–VP16 fusion protein. Plant Journal, 2008, 53, 587-594.	2.8	1
158	The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology, 2008, 10, 946-954.	4.6	715
159	Characterization of Arabidopsis <i>mur3</i> mutations that result in constitutive activation of defence in petioles, but not leaves. Plant Journal, 2008, 56, 691-703.	2.8	40
160	Plant Pathogen Effectors: Getting Mixed Messages. Current Biology, 2008, 18, R128-R130.	1.8	15
161	DELLAs Control Plant Immune Responses by Modulating the Balance of Jasmonic Acid and Salicylic Acid Signaling. Current Biology, 2008, 18, 650-655.	1.8	614
162	The Downy Mildew Effector Proteins ATR1 and ATR13 Promote Disease Susceptibility in <i>Arabidopsis thaliana</i> . Plant Cell, 2008, 19, 4077-4090.	3.1	247

#	Article	IF	CITATIONS
163	A Genome-Wide Functional Investigation into the Roles of Receptor-Like Proteins in Arabidopsis Â. Plant Physiology, 2008, 147, 503-517.	2.3	266
164	The F-Box Protein ACRE189/ACIF1 Regulates Cell Death and Defense Responses Activated during Pathogen Recognition in Tobacco and Tomato. Plant Cell, 2008, 20, 697-719.	3.1	154
165	Roles of Plant Hormones in Plant Resistance and Susceptibility to Pathogens. , 2008, , 1-10.		8
166	Genome-wide patterns of single-feature polymorphism in <i>Arabidopsis thaliana</i> . Proceedings of the United States of America, 2007, 104, 12057-12062.	3.3	157
167	Marker development for the genetic study of natural variation in Arabidopsis thaliana. Bioinformatics, 2007, 23, 3108-3109.	1.8	4
168	A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448, 497-500.	13.7	1,619
169	Nuclear Accumulation of the Arabidopsis Immune Receptor RPS4 Is Necessary for Triggering EDS1-Dependent Defense. Current Biology, 2007, 17, 2023-2029.	1.8	281
170	Pathological hormone imbalances. Current Opinion in Plant Biology, 2007, 10, 372-379.	3.5	513
171	Inducible cell death in plant immunity. Seminars in Cancer Biology, 2007, 17, 166-187.	4.3	98
172	Molecular analysis of Agrobacterium T-DNA integration in tomato reveals a role for left border sequence homology in most integration events. Molecular Genetics and Genomics, 2007, 278, 411-420.	1.0	14
173	Multiple Avirulence Paralogues in Cereal Powdery Mildew Fungi May Contribute to Parasite Fitness and Defeat of Plant Resistance. Plant Cell, 2006, 18, 2402-2414.	3.1	245
174	CITRX thioredoxin is a putative adaptor protein connecting Cf-9 and the ACIK1 protein kinase during the Cf-9/Avr9- induced defence response. FEBS Letters, 2006, 580, 4236-4241.	1.3	48
175	Perception of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated Transformation. Cell, 2006, 125, 749-760.	13.5	1,658
176	Dominantâ€negative interference with defence signalling by truncation mutations of the tomato Cfâ€9 disease resistance gene. Plant Journal, 2006, 46, 385-399.	2.8	6
177	TheArabidopsis thalianaTIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. Plant Journal, 2006, 47, 829-840.	2.8	103
178	The plant immune system. Nature, 2006, 444, 323-329.	13.7	10,939
179	A tomato mutant that shows stunting, wilting, progressive necrosis and constitutive expression of defence genes contains a recombinant Hcr9 gene encoding an autoactive protein. Plant Journal, 2006, 46, 369-384.	2.8	8
180	A Plant miRNA Contributes to Antibacterial Resistance by Repressing Auxin Signaling. Science, 2006, 312, 436-439.	6.0	1,762

#	Article	IF	CITATIONS
181	Reactive Oxygen Species Signaling in Response to Pathogens. Plant Physiology, 2006, 141, 373-378.	2.3	1,449
182	The E3 Ubiquitin Ligase Activity of Arabidopsis PLANT U-BOX17 and Its Functional Tobacco Homolog ACRE276 Are Required for Cell Death and Defense. Plant Cell, 2006, 18, 1084-1098.	3.1	215
183	Rewiring Mitogen-Activated Protein Kinase Cascade by Positive Feedback Confers Potato Blight Resistance. Plant Physiology, 2006, 140, 681-692.	2.3	79
184	A Bacterial Virulence Protein Suppresses Host Innate Immunity to Cause Plant Disease. Science, 2006, 313, 220-223.	6.0	438
185	The U-Box Protein CMPG1 Is Required for Efficient Activation of Defense Mechanisms Triggered by Multiple Resistance Genes in Tobacco and Tomato. Plant Cell, 2006, 18, 1067-1083.	3.1	195
186	Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant Journal, 2005, 42, 262-269.	2.8	120
187	Pathogen-induced, NADPH oxidase–derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nature Genetics, 2005, 37, 1130-1134.	9.4	513
188	Solanum mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theoretical and Applied Genetics, 2005, 110, 252-258.	1.8	107
189	Structure–Function Analysis of Cf-9, a Receptor-Like Protein with Extracytoplasmic Leucine-Rich Repeatsw⃞. Plant Cell, 2005, 17, 1000-1015.	3.1	112
190	Rapid Phosphorylation of a Syntaxin during the Avr9/Cf-9-Race-Specific Signaling Pathway. Plant Physiology, 2005, 138, 2406-2416.	2.3	41
191	Involvement of PPS3 Phosphorylated by Elicitor-Responsive Mitogen-Activated Protein Kinases in the Regulation of Plant Cell Death. Plant Physiology, 2005, 139, 1914-1926.	2.3	59
192	Functional Analysis of Avr9/Cf-9 Rapidly Elicited Genes Identifies a Protein Kinase, ACIK1, That Is Essential for Full Cf-9–Dependent Disease Resistance in Tomato. Plant Cell, 2005, 17, 295-310.	3.1	164
193	Phylogenomic Analysis of the Receptor-Like Proteins of Rice and Arabidopsis. Plant Physiology, 2005, 138, 611-623.	2.3	211
194	Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10736-10741.	3.3	292
195	Cladosporium Avr2 Inhibits Tomato Rcr3 Protease Required for Cf-2-Dependent Disease Resistance. Science, 2005, 308, 1783-1786.	6.0	415
196	Arabidopsis Downy Mildew Resistance Gene RPP27 Encodes a Receptor-Like Protein Similar to CLAVATA2 and Tomato Cf-9. Plant Physiology, 2004, 135, 1100-1112.	2.3	52
197	Cold Tolerance, SFR2, and the Legacy of Gary Warren. Plant Cell, 2004, 16, 1955-1957.	3.1	1
198	Genetic Variation at the Tomato Cf-4/Cf-9 Locus Induced by EMS Mutagenesis and Intralocus Recombination. Genetics, 2004, 167, 459-470.	1.2	32

#	Article	IF	CITATIONS
199	The Transcriptional Innate Immune Response to flg22. Interplay and Overlap with Avr Gene-Dependent Defense Responses and Bacterial Pathogenesis. Plant Physiology, 2004, 135, 1113-1128.	2.3	562
200	Virus-induced gene silencing inSolanumspecies. Plant Journal, 2004, 39, 264-272.	2.8	200
201	Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant Journal, 2004, 40, 213-224.	2.8	135
202	Gene shuffling-generated and natural variants of the tomato resistance gene Cf-9 exhibit different auto-necrosis-inducing activities in Nicotiana species. Plant Journal, 2004, 40, 942-956.	2.8	38
203	CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulates defence. EMBO Journal, 2004, 23, 2156-2165.	3.5	122
204	Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 2004, 428, 764-767.	13.7	1,487
205	The plant proteolytic machinery and its role in defence. Current Opinion in Plant Biology, 2004, 7, 400-407.	3.5	231
206	NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO Journal, 2003, 22, 2623-2633.	3.5	1,474
207	Multi-functional T-DNA/Ds tomato lines designed for gene cloning and molecular and physical dissection of the tomato genome. Plant Molecular Biology, 2003, 51, 83-98.	2.0	23
208	Rapid migration in gel filtration of the Cf-4 and Cf-9 resistance proteins is an intrinsic property of Cf proteins and not because of their association with high-molecular-weight proteins. Plant Journal, 2003, 35, 305-315.	2.8	33
209	Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 2003, 422, 442-446.	13.7	1,999
210	Nicotiana benthamiana gp91phox Homologs NbrbohA and NbrbohB Participate in H2O2 Accumulation and Resistance to Phytophthora infestans. Plant Cell, 2003, 15, 706-718.	3.1	573
211	p-CoumaroyInoradrenaline, a Novel Plant Metabolite Implicated in Tomato Defense against Pathogens. Journal of Biological Chemistry, 2003, 278, 43373-43383.	1.6	88
212	ATIDB: Arabidopsis thaliana insertion database. Nucleic Acids Research, 2003, 31, 1245-1251.	6.5	36
213	CDPK-mediated signalling pathways: specificity and cross-talk. Journal of Experimental Botany, 2003, 55, 181-188.	2.4	342
214	Putting Plant Disease Resistance Genes to Work. , 2003, , 10-17.		1
215	Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10865-10869.	3.3	385
216	Regulatory Role of SGT1 in Early R Gene-Mediated Plant Defenses. Science, 2002, 295, 2077-2080.	6.0	385

#	Article	IF	CITATIONS
217	A Tomato Cysteine Protease Required for Cf-2-Dependent Disease Resistance and Suppression of Autonecrosis. Science, 2002, 296, 744-747.	6.0	365
218	Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 517-522.	3.3	1,488
219	Developmental Control of Promoter Activity Is Not Responsible for Mature Onset of Cf-9B-Mediated Resistance to Leaf Mold in Tomato. Molecular Plant-Microbe Interactions, 2002, 15, 1099-1107.	1.4	66
220	Arabidopsis RAR1 Exerts Rate-Limiting Control of R Gene–Mediated Defenses against Multiple Pathogens. Plant Cell, 2002, 14, 979-992.	3.1	197
221	GARNet, the Genomic Arabidopsis Resource Network. Trends in Plant Science, 2002, 7, 145-147.	4.3	10
222	Transposition patterns of unlinked transposed Ds elements from two T-DNA loci on tomato chromosomes 7 and 8. Molecular Genetics and Genomics, 2002, 266, 882-890.	1.0	4
223	Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant Journal, 2002, 29, 439-451.	2.8	256
224	Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential forArabidopsisembryo maturation. Plant Journal, 2002, 29, 225-235.	2.8	333
225	No Evidence for Binding Between Resistance Gene Product Cf-9 of Tomato and Avirulence Gene Product AVR9 of Cladosporium fulvum. Molecular Plant-Microbe Interactions, 2001, 14, 867-876.	1.4	78
226	Domain Swapping and Gene Shuffling Identify Sequences Required for Induction of an Avr-Dependent Hypersensitive Response by the Tomato Cf-4 and Cf-9 Proteins. Plant Cell, 2001, 13, 255.	3.1	2
227	Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO Journal, 2001, 20, 5556-5567.	3.5	476
228	Plant pathogens and integrated defence responses to infection. Nature, 2001, 411, 826-833.	13.7	3,460
229	Putting knowledge of plant disease resistance genes to work. Current Opinion in Plant Biology, 2001, 4, 281-287.	3.5	151
230	Domain Swapping and Gene Shuffling Identify Sequences Required for Induction of an Avr-Dependent Hypersensitive Response by the Tomato Cf-4 and Cf-9 Proteins. Plant Cell, 2001, 13, 255-272.	3.1	116
231	Comparison of the Hypersensitive Response Induced by the Tomato Cf-4 and Cf-9 Genes in Nicotiana spp Molecular Plant-Microbe Interactions, 2000, 13, 465-469.	1.4	43
232	Resistance Gene-Dependent Activation of a Calcium-Dependent Protein Kinase in the Plant Defense Response. Plant Cell, 2000, 12, 803.	3.1	5
233	Early signalling events in the Avr9/Cf-9-dependent plant defence response. Molecular Plant Pathology, 2000, 1, 3-8.	2.0	12
234	UnravellingRgene-mediated disease resistance pathways inArabidopsis. Molecular Plant Pathology, 2000, 1, 17-24.	2.0	35

#	Article	IF	CITATIONS
235	Dispersion of the Cf-4 disease resistance gene in Lycopersicon germplasm. Heredity, 2000, 85, 266-270.	1.2	10
236	Functional, c-myc-tagged Cf-9 resistance gene products are plasma-membrane localized and glycosylated. Plant Journal, 2000, 21, 529-536.	2.8	51
237	Salicylic acid is not required forCf-2- andCf-9-dependent resistance of tomato toCladosporium fulvum. Plant Journal, 2000, 23, 305-318.	2.8	139
238	Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO Journal, 2000, 19, 6150-6161.	3.5	797
239	Resistance Gene-Dependent Activation of a Calcium-Dependent Protein Kinase in the Plant Defense Response. Plant Cell, 2000, 12, 803-815.	3.1	253
240	Arabidopsis Research 2000. Plant Cell, 2000, 12, 2302.	3.1	0
241	cDNA-AFLP Reveals a Striking Overlap in Race-Specific Resistance and Wound Response Gene Expression Profiles. Plant Cell, 2000, 12, 963.	3.1	2
242	cDNA-AFLP Display for the Isolation of Peronospora parasitica Genes Expressed During Infection in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2000, 13, 895-898.	1.4	58
243	cDNA-AFLP Reveals a Striking Overlap in Race-Specific Resistance and Wound Response Gene Expression Profiles. Plant Cell, 2000, 12, 963-977.	3.1	387
244	Genetic complexity of pathogen perception by plants: The example of Rcr3, a tomato gene required specifically by Cf-2. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8807-8814.	3.3	151
245	Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3747-52.	3.3	85
246	Highlights from the Ninth International Congress on Molecular Plant-Microbe Interactions. Plant Cell, 1999, 11, 2063.	3.1	0
247	A Chromodomain Protein Encoded by the Arabidopsis CAO Gene Is a Plant-Specific Component of the Chloroplast Signal Recognition Particle Pathway That Is Involved in LHCP Targeting. Plant Cell, 1999, 11, 87.	3.1	2
248	Rapid Avr9- and Cf-9-Dependent Activation of MAP Kinases in Tobacco Cell Cultures and Leaves: Convergence of Resistance Gene, Elicitor, Wound, and Salicylate Responses. Plant Cell, 1999, 11, 273.	3.1	10
249	Multiple Independent Defective Suppressor-mutator Transposon Insertions in Arabidopsis: A Tool for Functional Genomics. Plant Cell, 1999, 11, 1841-1852.	3.1	353
250	Pronounced Intraspecific Haplotype Divergence at the RPP5 Complex Disease Resistance Locus of Arabidopsis. Plant Cell, 1999, 11, 2099-2111.	3.1	312
251	The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1761-1766.	3.3	306
252	Recombination between diverged clusters of the tomato Cf-9 plant disease resistance gene family. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5850-5855.	3.3	113

#	Article	IF	CITATIONS
253	EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3292-3297.	3.3	571
254	A Chromodomain Protein Encoded by the Arabidopsis CAO Gene Is a Plant-Specific Component of the Chloroplast Signal Recognition Particle Pathway That Is Involved in LHCP Targeting. Plant Cell, 1999, 11, 87-99.	3.1	142
255	Rapid Avr9- and Cf-9–Dependent Activation of MAP Kinases in Tobacco Cell Cultures and Leaves: Convergence of Resistance Gene, Elicitor, Wound, and Salicylate Responses. Plant Cell, 1999, 11, 273-287.	3.1	458
256	Homologues of the Cf-9 Disease Resistance Gene (Hcr9s) Are Present at Multiple Loci on the Short Arm of Tomato Chromosome 1. Molecular Plant-Microbe Interactions, 1999, 12, 93-102.	1.4	53
257	K+ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporium fulvum Avr9 elicitor-dependent signal transduction. Plant Journal, 1999, 19, 453-462.	2.8	79
258	Multiple Independent Defective Suppressor-mutator Transposon Insertions in Arabidopsis: A Tool for Functional Genomics. Plant Cell, 1999, 11, 1841.	3.1	35
259	Pronounced Intraspecific Haplotype Divergence at the RPP5 Complex Disease Resistance Locus of Arabidopsis. Plant Cell, 1999, 11, 2099.	3.1	5
260	A second gene at the tomato Cf-4 locus confers resistance to Cladosporium fulvum through recognition of a novel avirulence determinant. Plant Journal, 1999, 20, 279-288.	2.8	73
261	Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 1998, 391, 485-488.	13.7	844
262	The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Current Biology, 1998, 8, R226-R228.	1.8	539
263	Plant disease-resistance proteins and the gene-for-gene concept. Trends in Biochemical Sciences, 1998, 23, 454-456.	3.7	694
264	Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra- and extracellular compartments. Plant, Cell and Environment, 1998, 21, 1101-1111.	2.8	89
265	SixArabidopsis thalianahomologues of the human respiratory burst oxidase (gp91phox). Plant Journal, 1998, 14, 365-370.	2.8	403
266	Genetic and molecular analysis of tomato Cf genes for resistance to Cladosporium fulvum. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1413-1424.	1.8	81
267	The Tomato Cf-9 Disease Resistance Gene Functions in Tobacco and Potato to Confer Responsiveness to the Fungal Avirulence Gene Product Avr9. Plant Cell, 1998, 10, 1251-1266.	3.1	138
268	The Tomato Cf-5 Disease Resistance Gene and Six Homologs Show Pronounced Allelic Variation in Leucine-Rich Repeat Copy Number. Plant Cell, 1998, 10, 1915-1925.	3.1	286
269	Three Genes of the Arabidopsis RPP1 Complex Resistance Locus Recognize Distinct Peronospora parasitica Avirulence Determinants. Plant Cell, 1998, 10, 1847.	3.1	10
270	Transposon Tagging of the Defective embryo and meristems Gene of Tomato. Plant Cell, 1998, 10, 877-887.	3.1	34

#	Article	IF	CITATIONS
271	Three Genes of the Arabidopsis RPP1 Complex Resistance Locus Recognize Distinct Peronospora parasitica Avirulence Determinants. Plant Cell, 1998, 10, 1847-1860.	3.1	351
272	Transposon Tagging of the Defective embryo and meristems Gene of Tomato. Plant Cell, 1998, 10, 877.	3.1	2
273	The Tomato Cf-5 Disease Resistance Gene and Six Homologs Show Pronounced Allelic Variation in Leucine-Rich Repeat Copy Number. Plant Cell, 1998, 10, 1915.	3.1	17
274	The Tomato Cf-9 Disease Resistance Gene Functions in Tobacco and Potato to Confer Responsiveness to the Fungal Avirulence Gene Product Avr9. Plant Cell, 1998, 10, 1251.	3.1	11
275	Rapid, Cf-9- and Avr9-Dependent Production of Active Oxygen Species in Tobacco Suspension Cultures. Molecular Plant-Microbe Interactions, 1998, 11, 1155-1166.	1.4	118
276	Epigenetic Instability and Trans-Silencing Interactions Associated With an SPT::Ac T-DNA Locus in Tobacco. Genetics, 1998, 148, 457-469.	1.2	14
277	The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6 Plant Cell, 1997, 9, 879-894.	3.1	434
278	Characterization of the Tomato Cf-4 Gene for Resistance to Cladosporium fulvum Identifies Sequences That Determine Recognitional Specificity in Cf-4 and Cf-9. Plant Cell, 1997, 9, 2209.	3.1	67
279	PLANT DISEASE RESISTANCE GENES. Annual Review of Plant Biology, 1997, 48, 575-607.	14.2	965
280	Novel Disease Resistance Specificities Result from Sequence Exchange between Tandemly Repeated Genes at the Cf-4/9 Locus of Tomato. Cell, 1997, 91, 821-832.	13.5	562
281	A kinase with keen eyes. Nature, 1997, 385, 397-398.	13.7	14
282	AtDMC1, the Arabidopsis homologue of the yeast DMC1 gene: characterization, transposon-induced allelic variation and meiosis-associated expression. Plant Journal, 1997, 11, 1-14.	2.8	235
283	Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant Journal, 1997, 12, 1197-1211.	2.8	102
284	The Tomato Cf-2 Disease Resistance Locus Comprises Two Functional Genes Encoding Leucine-Rich Repeat Proteins. Cell, 1996, 84, 451-459.	13.5	591
285	Resistance Gene-Dependent Plant Defense Responses. Plant Cell, 1996, 8, 1773.	3.1	37
286	Plant disease resistance genes: structure, function and evolution. Current Opinion in Biotechnology, 1996, 7, 155-160.	3.3	37
287	rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant Journal, 1996, 10, 515-522.	2.8	294
288	Repression of the Ac-transposase gene promoter by Ac transposase. Plant Journal, 1996, 9, 911-917.	2.8	11

#	Article	IF	CITATIONS
289	Ensnaring microbes: the components of plant disease resistance. New Phytologist, 1996, 133, 11-34.	3.5	14
290	The Tomato Dwarf Gene Isolated by Heterologous Transposon Tagging Encodes the First Member of a New Cytochrome P450 Family. Plant Cell, 1996, 8, 959.	3.1	35
291	FourArabidopsis RPPLoci Controlling Resistance to theNoco2Isolate ofPeronospora parasiticaMap to Regions Known to Contain OtherRPPRecognition Specificities. Molecular Plant-Microbe Interactions, 1996, 9, 464.	1.4	44
292	Somatic and germinal activities of maize Activator (Ac) transposase mutants in transgenic tobacco. Plant Journal, 1995, 8, 45-54.	2.8	15
293	Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant Journal, 1995, 8, 785-794.	2.8	215
294	Altered regulation of tomato and tobacco pigmentation genes caused by the delila gene of Antirrhinum. Plant Journal, 1995, 7, 333-339.	2.8	136
295	The maize transposable element Ac is mobile in the legume Lotus japonicus. Plant Molecular Biology, 1995, 27, 981-993.	2.0	67
296	Analysis of splice donor and acceptor site function in a transposable gene trap derived from the maize element Activator. Molecular Genetics and Genomics, 1995, 249, 91-101.	2.4	16
297	Plant disease resistance genes: unravelling how they work. Canadian Journal of Botany, 1995, 73, 495-505.	1.2	10
298	Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements Genes and Development, 1995, 9, 1797-1810.	2.7	671
299	Aberrant Transpositions of Maize Double Ds-Like Elements Usually Involve Ds Ends on Sister Chromatids. Plant Cell, 1995, 7, 1235.	3.1	18
300	Molecular genetics of plant disease resistance. Science, 1995, 268, 661-667.	6.0	866
301	Functional Expression of a Fungal Avirulence Gene from a Modified Potato Virus X Genome. Molecular Plant-Microbe Interactions, 1995, 8, 181.	1.4	73
302	High-Resolution Mapping of the Physical Location of the Tomato Cf-2Gene. Molecular Plant-Microbe Interactions, 1995, 8, 200.	1.4	36
303	Identification of Two Genes Required in Tomato for Full Cf-9: Dependent Resistance to Cladosporium fulvum. Plant Cell, 1994, 6, 361.	3.1	48
304	RFLP linkage analysis of the Cf-4 and Cf-9 genes for resistance toCladosporium fulvum in tomato. Theoretical and Applied Genetics, 1994, 88, 691-700.	1.8	62
305	Chloroplast targeting of spectinomycin adenyltransferase provides a cell-autonomous marker for monitoring transposon excision in tomato and tobacco. Molecular Genetics and Genomics, 1994, 244, 189-196.	2.4	6
306	Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Molecular Genetics and Genomics, 1994, 242, 573-585.	2.4	82

#	Article	IF	CITATIONS
307	Plant Pathology: Resistance crumbles?. Current Biology, 1994, 4, 67-69.	1.8	11
308	Plant Pathology: Paranoid plants have their genes examined. Current Biology, 1994, 4, 749-751.	1.8	28
309	Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 1994, 266, 789-793.	6.0	885
310	Developmentally regulated cell death on expression of the fungal avirulence gene Avr9 in tomato seedlings carrying the disease-resistance gene Cf-9 Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10445-10449.	3.3	121
311	Incomplete Dominance of Tomato <i>Cf</i> Genes for Resistance to <i>Cladosporium fulvum</i> . Molecular Plant-Microbe Interactions, 1994, 7, 58.	1.4	65
312	CfGene-Dependent Inductionof a Î ² -1,3-Glucanase Promoter in Tomato PlantsInfected withCladosporium fulvum. Molecular Plant-Microbe Interactions, 1994, 7, 645.	1.4	24
313	Phenotypic characterization and molecular mapping of the Arabidopsis thaliana locus RPP5, determining disease resistance to Peronospora parasitica. Plant Journal, 1993, 4, 821-831.	2.8	83
314	Transactivation of Ds elements in plants of lettuce (Lactuca sativa). Molecular Genetics and Genomics, 1993, 241-241, 389-398.	2.4	16
315	Effects of gene dosage and sequence modification on the frequency and timing of transposition of the maize element Activator (Ac) in tobacco. Plant Molecular Biology, 1993, 21, 157-170.	2.0	36
316	Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant Journal, 1993, 3, 493-494.	2.8	274
317	Use of the maize transposonsActivator andDissociation to show that phosphinothricin and spectinomycin resistance genes act non-cell-autonomously in tobacco and tomato seedlings. Transgenic Research, 1993, 2, 63-78.	1.3	19
318	High level expression of the Activator transposase gene inhibits the excision of Dissociation in tobacco cotyledons. Cell, 1993, 75, 507-517.	13.5	72
319	A Genetic Analysis of DNA Sequence Requirements for Dissociation State I Activity in Tobacco. Plant Cell, 1993, 5, 501.	3.1	11
320	Heterologous Transposon Tagging of the DRL1 Locus in Arabidopsis. Plant Cell, 1993, 5, 631.	3.1	29
321	Studies on the Mechanism by Which Tomato Cf (Cladosporium fulvum) Resistance Genes Activate Plant Defence. Current Plant Science and Biotechnology in Agriculture, 1993, , 457-461.	0.0	3
322	Close Linkage Between the <i>Cf-2/Cf-5</i> and <i>Mi</i> Resistance Loci in Tomato. Molecular Plant-Microbe Interactions, 1993, 6, 341.	1.4	102
323	Two Complex Resistance Loci Revealed in Tomato by Classical and RFLP Mapping of the <i>Cf-2, Cf-4, Cf-5,</i> and <i>Cf-9</i> Genes for Resistance to <i>Cladosporium fulvum</i> . Molecular Plant-Microbe Interactions, 1993, 6, 348.	1.4	113
324	Research NotesUse of Fungal Transformants Expressingβ-Glucuronidase Activity to Detect Infection and Measure Hyphal Biomass in Infected Plant Tissues. Molecular Plant-Microbe Interactions, 1993, 6, 521.	1.4	57

#	Article	IF	CITATIONS
325	Promoter Fusions to the Activator Transposase Gene Cause Distinct Patterns of Dissociation Excision in Tobacco Cotyledons. Plant Cell, 1992, 4, 573.	3.1	0
326	Elevated Levels of Activator Transposase mRNA Are Associated with High Frequencies of Dissociation Excision in Arabidopsis. Plant Cell, 1992, 4, 583.	3.1	0
327	Development of an efficient two-element transposon tagging system in Arabidopsis thaliana. Molecular Genetics and Genomics, 1992, 233, 449-61.	2.4	99
328	Behaviour of the maize transposable element Ac in Arabidopsis thaliana. Plant Journal, 1992, 2, 69-81.	2.8	113
329	Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Research, 1992, 1, 285-297.	1.3	301
330	Expression and stability of amplified genes encoding 5-enolpyruvylshikimate-3-phosphate synthase in glyphosate-tolerant tobacco cells. Plant Molecular Biology, 1991, 17, 1127-1138.	2.0	47
331	The Mechanism and Control of Tam3 Transposition. , 1991, , 317-332.		Ο
332	Aminoglycoside-3?-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. Plant Molecular Biology, 1990, 14, 197-205.	2.0	59
333	Preferential Transposition of the Maize Element Activator to Linked Chromosomal Locations in Tobacco. Plant Cell, 1990, 2, 701.	3.1	32
334	Visual Detection of Transposition of the Maize Element Activator (Ac) in Tobacco Seedlings. Science, 1989, 244, 204-207.	6.0	187
335	Relative strengths of the 35S califlower mosaic virus, 1′, 2′, and nopaline synthase promoters in transformed tobacco sugarbeet and oilseed rape callus tissue. Molecular Genetics and Genomics, 1988, 212, 182-190.	2.4	113
336	Improved expression of streptomycin resistance in plants due to a deletion in the streptomycin phosphotransferase coding sequence. Molecular Genetics and Genomics, 1988, 214, 456-459.	2.4	39
337	Expression of bacterial chitinase protein in tobacco leaves using two photosynthetic gene promoters. Molecular Genetics and Genomics, 1988, 212, 536-542.	2.4	55
338	Coordinated expression between two photosynthetic petunia genes in transgenic plants. Molecular Genetics and Genomics, 1988, 211, 507-514.	2.4	33
339	Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants. Nucleic Acids Research, 1988, 16, 9267-9283.	6.5	141
340	An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene, 1987, 61, 299-306.	1.0	145
341	Optimizing the expression of chimeric genes in plant cells. Molecular Genetics and Genomics, 1987, 210, 572-577.	2.4	56
342	T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Molecular Genetics and Genomics, 1987, 207, 471-477.	2.4	158

#	Article	IF	CITATIONS
343	T-DNA structure and gene expression in petunia plants transformed by Agrobacterium tumefaciens C58 derivatives. Molecular Genetics and Genomics, 1987, 207, 478-485.	2.4	135
344	A dominant nuclear streptomycin resistance marker for plant cell transformation. Molecular Genetics and Genomics, 1987, 210, 86-91.	2.4	42
345	The Expression of Introduced Genes in Regenerated Plants. , 1987, , 45-59.		5
346	Isolation and characterization of genes encoding two chitinase enzymes from <i>Serratia marcescens</i> . EMBO Journal, 1986, 5, 467-473.	3.5	228
347	High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO Journal, 1985, 4, 2411-2418.	3.5	438
348	Klebsiella pneumoniae nifA product activates the Rhizobium meliloti nitrogenase promoter. Nature, 1983, 301, 728-732.	13.7	130
349	The mapping of highly-repeated DNA families and their relationship to C-bands in chromosomes of Secale cereale. Chromosoma, 1982, 86, 595-612.	1.0	120
350	The structure, amount and chromosomal localisation of defined repeated DNA sequences in species of the genus Secale. Chromosoma, 1982, 86, 613-641.	1.0	106
351	A molecular description of telomeric heterochromatin in secale species. Cell, 1980, 19, 545-560.	13.5	610
352	SMRT RenSeq protocol. Protocol Exchange, 0, , .	0.3	5