Thomas Seyller

List of Publications by Citations

Source: https://exaly.com/author-pdf/4766828/thomas-seyller-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18,971 58 191 137 h-index g-index citations papers 20,602 6.31 199 5.2 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
191	Controlling the electronic structure of bilayer graphene. <i>Science</i> , 2006 , 313, 951-4	33.3	2717
190	Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. <i>Nature Materials</i> , 2009 , 8, 203-7	27	2132
189	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. <i>Nanoscale</i> , 2015 , 7, 4598-810	7.7	2015
188	Quasiparticle dynamics in graphene. <i>Nature Physics</i> , 2007 , 3, 36-40	16.2	932
187	Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. <i>Physical Review B</i> , 2008 , 77,	3.3	759
186	Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. <i>Physical Review Letters</i> , 2007 , 98, 206802	7.4	612
185	Giant Faraday rotation in single- and multilayer graphene. <i>Nature Physics</i> , 2011 , 7, 48-51	16.2	428
184	Friction and dissipation in epitaxial graphene films. <i>Physical Review Letters</i> , 2009 , 102, 086102	7.4	412
183	Observation of plasmarons in quasi-freestanding doped graphene. <i>Science</i> , 2010 , 328, 999-1002	33.3	340
182	Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. <i>Physical Review B</i> , 2008 , 77,	3.3	314
181	Raman spectra of epitaxial graphene on SiC(0001). Applied Physics Letters, 2008, 92, 201918	3.4	276
180	Direct view of hot carrier dynamics in graphene. <i>Physical Review Letters</i> , 2013 , 111, 027403	7.4	260
179	Extended van Hove singularity and superconducting instability in doped graphene. <i>Physical Review Letters</i> , 2010 , 104, 136803	7.4	232
178	Reconstruction of molecular orbital densities from photoemission data. <i>Science</i> , 2009 , 326, 702-6	33.3	224
177	The quasi-free-standing nature of graphene on H-saturated SiC(0001). <i>Applied Physics Letters</i> , 2011 , 99, 122106	3.4	206
176	Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. <i>Physical Review B</i> , 2008 , 78,	3.3	192
175	Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene. <i>Nano Letters</i> , 2012 , 12, 2470-4	11.5	191

(2013-2009)

174	Quasiparticle transformation during a metal-insulator transition in graphene. <i>Physical Review Letters</i> , 2009 , 103, 056404	7.4	187
173	Local work function measurements of epitaxial graphene. <i>Applied Physics Letters</i> , 2008 , 93, 133117	3.4	186
172	Origin of doping in quasi-free-standing graphene on silicon carbide. <i>Physical Review Letters</i> , 2012 , 108, 246104	7.4	185
171	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001	5.9	179
170	Doping of single-walled carbon nanotube bundles by Brfisted acids. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 5472-5476	3.6	175
169	Structural and electronic properties of graphite layers grown on SiC(0001). <i>Surface Science</i> , 2006 , 600, 3906-3911	1.8	171
168	Epitaxial Graphenes on Silicon Carbide. MRS Bulletin, 2010 , 35, 296-305	3.2	164
167	Symmetry breaking in few layer graphene films. <i>New Journal of Physics</i> , 2007 , 9, 385-385	2.9	162
166	Quantum oscillations and quantum Hall effect in epitaxial graphene. Physical Review B, 2010, 81,	3.3	155
165	Origin of the energy bandgap in epitaxial graphene. <i>Nature Materials</i> , 2008 , 7, 258-9; author reply 259-6	5 0 7	152
164	Epitaxial graphene: a new material. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 1436-1446	1.3	150
163	Morphology of graphene thin film growth on SiC(0001). New Journal of Physics, 2008, 10, 023034	2.9	147
162	Raman topography and strain uniformity of large-area epitaxial graphene. Nano Letters, 2009, 9, 964-8	11.5	138
161	Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene. <i>Nature Materials</i> , 2013 , 12, 887-92	27	127
160	Highly p-doped epitaxial graphene obtained by fluorine intercalation. <i>Applied Physics Letters</i> , 2011 , 98, 184102	3.4	125
159	Long spin relaxation times in wafer scale epitaxial graphene on SiC(0001). Nano Letters, 2012, 12, 1498-	- 502 5	102
158	On the way to graphane-pronounced fluorescence of polyhydrogenated graphene. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 754-7	16.4	97
157	Growth and electronic structure of boron-doped graphene. <i>Physical Review B</i> , 2013 , 87,	3.3	96

156	Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC. <i>2D Materials</i> , 2016 , 3, 041002	5.9	95
155	Terahertz radiation driven chiral edge currents in graphene. <i>Physical Review Letters</i> , 2011 , 107, 276601	7.4	94
154	Formation of high-quality quasi-free-standing bilayer graphene on SiC(0001) by oxygen intercalation upon annealing in air. <i>Carbon</i> , 2013 , 52, 83-89	10.4	92
153	Al2O3 prepared by atomic layer deposition as gate dielectric on 6H-SiC(0001). <i>Applied Physics Letters</i> , 2003 , 83, 1830-1832	3.4	90
152	Schottky barrier between 6H-SiC and graphite: Implications for metal/SiC contact formation. <i>Applied Physics Letters</i> , 2006 , 88, 242103	3.4	87
151	Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC. <i>Nano Letters</i> , 2013 , 13, 6210-5	11.5	85
150	Electronic and chemical passivation of hexagonal 6HBiC surfaces by hydrogen termination. <i>Applied Physics Letters</i> , 2001 , 78, 1216-1218	3.4	84
149	Ultrafast dynamics of massive dirac fermions in bilayer graphene. <i>Physical Review Letters</i> , 2014 , 112, 257401	7.4	82
148	Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem. <i>Physical Review B</i> , 2010 , 82,	3.3	81
147	Effective screening and the plasmaron bands in graphene. <i>Physical Review B</i> , 2011 , 84,	3.3	78
146	Contribution of the buffer layer to the Raman spectrum of epitaxial graphene on SiC(0001). <i>New Journal of Physics</i> , 2013 , 15, 043031	2.9	75
145	Passivation of hexagonal SiC surfaces by hydrogen termination. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S1755-S1782	1.8	75
144	Growth and electronic structure of nitrogen-doped graphene on Ni(111). <i>Physical Review B</i> , 2012 , 86,	3.3	73
143	High-transconductance graphene solution-gated field effect transistors. <i>Applied Physics Letters</i> , 2011 , 99, 033503	3.4	71
142	Observation of top-site adsorption for Xe on Cu(111). Chemical Physics Letters, 1998, 291, 567-572	2.5	71
141	Bottom-gated epitaxial graphene. <i>Nature Materials</i> , 2011 , 10, 357-60	27	69
140	Polarization doping of graphene on silicon carbide. 2D Materials, 2014, 1, 035003	5.9	66
139	Epitaxial Growth and Electronic Properties of Large Hexagonal Graphene Domains on Cu(111) Thin Film. <i>Applied Physics Express</i> , 2013 , 6, 075101	2.4	65

(2007-2004)

138	The adsorption sites of rare gases on metallic surfaces: a review. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S2839-S2862	1.8	65
137	Tunable carrier multiplication and cooling in graphene. <i>Nano Letters</i> , 2015 , 15, 326-31	11.5	64
136	Renormalization of graphene bands by many-body interactions. <i>Solid State Communications</i> , 2007 , 143, 63-71	1.6	63
135	Experimental studies of the electronic structure of graphene. <i>Progress in Surface Science</i> , 2009 , 84, 380-	-4618	59
134	Extremely flat band in bilayer graphene. Science Advances, 2018, 4, eaau0059	14.3	59
133	Alternative techniques to reduce interface traps in n-type 4H-SiC MOS capacitors. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 1378-1389	1.3	56
132	First results from a second generation toroidal electron spectrometer. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2005 , 144-147, 1001-1004	1.7	53
131	Automated preparation of high-quality epitaxial graphene on 6H-SiC(0001). <i>Physica Status Solidi (B):</i> Basic Research, 2010 , 247, 2924-2926	1.3	52
130	Mono- and few-layer nanocrystalline graphene grown on Al2O3(0 0 0 1) by molecular beam epitaxy. <i>Carbon</i> , 2013 , 56, 339-350	10.4	51
129	Terahertz ratchet effects in graphene with a lateral superlattice. <i>Physical Review B</i> , 2016 , 93,	3.3	50
128	Localized states influence spin transport in epitaxial graphene. <i>Physical Review Letters</i> , 2013 , 110, 0672	0 9 .4	49
127	Molecular and electronic structure of PTCDA on bilayer graphene on SiC(0001) studied with scanning tunneling microscopy. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2064-2067	1.3	49
126	Initial Stages of the Graphite-SiC(0001) Interface Formation Studied by Photoelectron Spectroscopy. <i>Materials Science Forum</i> , 2007 , 556-557, 525-528	0.4	49
125	Electronic properties of SiC surfaces and interfaces: some fundamental and technological aspects. <i>Applied Physics A: Materials Science and Processing</i> , 2006 , 85, 371-385	2.6	48
124	Dynamical LEED study of Pt(111)[BB)R30 弦 e. <i>Physical Review B</i> , 1999 , 60, 11084-11088	3.3	47
123	A universal transfer route for graphene. <i>Nanoscale</i> , 2014 , 6, 889-96	7.7	46
122	Fabry-Perot enhanced Faraday rotation in graphene. Optics Express, 2013, 21, 24736-41	3.3	44
121	Quantum size effects in quasi-free-standing Pb layers. <i>Physical Review B</i> , 2007 , 75,	3.3	44

120	Synchrotron x-ray photoelectron spectroscopy study of hydrogen-terminated 6HBiC{0001} surfaces. <i>Physical Review B</i> , 2003 , 67,	3.3	43
119	Quasi-Freestanding Graphene on SiC(0001). Materials Science Forum, 2010, 645-648, 629-632	0.4	42
118	Characteristics of solution gated field effect transistors on the basis of epitaxial graphene on silicon carbide. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 345303	3	41
117	Multicomponent magneto-optical conductivity of multilayer graphene on SiC. <i>Physical Review B</i> , 2011 , 84,	3.3	40
116	Work function of graphene multilayers on SiC(0001). 2D Materials, 2017, 4, 015043	5.9	39
115	Atomic layer deposited aluminum oxide films on graphite and graphene studied by XPS and AFM. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2010 , 7, 398-401		39
114	Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces. <i>Physical Review B</i> , 2013 , 88,	3.3	38
113	Friction and atomic-layer-scale wear of graphitic lubricants on SiC(0001) in dry sliding. <i>Wear</i> , 2013 , 300, 78-81	3.5	38
112	Buffer layer free graphene on SiC(0 0 0 1) via interface oxidation in water vapor. <i>Carbon</i> , 2014 , 70, 258-	-2 65 .4	37
111	Observation of 4 nm pitch stripe domains formed by exposing graphene to ambient air. <i>ACS Nano</i> , 2013 , 7, 10032-7	16.7	35
110	Surface-induced hybridization between graphene and titanium. ACS Nano, 2014, 8, 7704-13	16.7	33
109	Low-energy electron diffraction study of the multilayer relaxation of Cu(211). <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1999 , 17, 1635-1638	2.9	33
108	Hydrogen terminated 4HBiC(11[00) and (112[0) surfaces studied by synchrotron x-ray photoelectron spectroscopy. <i>Physical Review B</i> , 2005 , 71,	3.3	32
107	Effect of an intermediate graphite layer on the electronic properties of metal/SiC contacts. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 1369-1377	1.3	30
106	Dynamical LEED study of Pd(111)[BB)R30fMe. Physical Review B, 2002, 66,	3.3	30
105	Ultrafast electron dynamics in epitaxial graphene investigated with time- and angle-resolved photoemission spectroscopy. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 164206	1.8	27
104	Development and character of gap states on alkali doping of molecular films. <i>New Journal of Physics</i> , 2014 , 16, 023011	2.9	27
103	PES and LEED study of hydrogen- and oxygen-terminated 6HBiC(0 0 0 1) and surfaces. <i>Applied Surface Science</i> , 2001 , 184, 278-283	6.7	27

(2018-2011)

10	A momentum space view of the surface chemical bond. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 3604-11	3.6	26	
10	Tuning the charge carriers in epitaxial graphene on SiC(0001) from electron to hole via molecular doping with C60F48. <i>Applied Physics Letters</i> , 2013 , 102, 241601	3.4	25	
10	Precise control of epitaxy of graphene by microfabricating SiC substrate. <i>Applied Physics Letters</i> , 2012 , 101, 041605	3.4	25	
99	Interaction of CO2 with Cs-promoted Fe(110) as compared to Fe(110)/K+CO2. <i>Surface Science</i> , 1998 , 400, 63-79	1.8	25	
98	Annealing-induced magnetic moments detected by spin precession measurements in epitaxial graphene on SiC. <i>Physical Review B</i> , 2013 , 87,	3.3	24	
97	Classical to quantum crossover of the cyclotron resonance in graphene: a study of the strength of intraband absorption. <i>New Journal of Physics</i> , 2012 , 14, 095008	2.9	23	
96	Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions. <i>Applied Physics Letters</i> , 2009 , 95, 262101	3.4	23	
95	Luminescence, patterned metallic regions, and photon-mediated electronic changes in single-sided fluorinated graphene sheets. <i>ACS Nano</i> , 2014 , 8, 7801-8	16.7	22	
94	Band structure and many body effects in graphene. <i>European Physical Journal: Special Topics</i> , 2007 , 148, 5-13	2.3	22	
93	Correlation effects at ideal SiC{0001}[11] surfaces. <i>Physical Review B</i> , 2006 , 73,	3.3	22	
92	Origin of the split Sill stretch mode on hydrogen terminated 6H-SiC(0001): Titration of crystal truncation. <i>Applied Physics Letters</i> , 2002 , 80, 4726-4728	3.4	22	
91	Hydrogenation of 6H-SiC as a surface passivation stable in air. <i>Diamond and Related Materials</i> , 2001 , 10, 1291-1294	3.5	22	
90	Robust Phonon-Plasmon Coupling in Quasifreestanding Graphene on Silicon Carbide. <i>Physical Review Letters</i> , 2016 , 116, 106802	7.4	21	
89	Experimental analysis of the thermal annealing of hard a-C:H films. <i>Diamond and Related Materials</i> , 2014 , 45, 43-57	3.5	21	
88	Electron-phonon coupling in quasi-free-standing graphene. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 094001	1.8	21	
87	Photoemission Studies of Graphene on SiC: Growth, Interface, and Electronic Structure 2008 , 159-170		21	
86	Porous Ge@C materials via twin polymerization of germanium(II) salicyl alcoholates for Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2705-2719	13	19	
				_

84	Ramifications of optical pumping on the interpretation of time-resolved photoemission experiments on graphene. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2015 , 200, 340-346	5 ^{1.7}	18
83	Visualizing atomic-scale negative differential resistance in bilayer graphene. <i>Physical Review Letters</i> , 2013 , 110, 036804	7.4	18
82	The electronic structure of pentacene revisited. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2009 , 174, 22-27	1.7	18
81	Transport properties of high-quality epitaxial graphene on 6H-SiC(0001). <i>Solid State Communications</i> , 2011 , 151, 1061-1064	1.6	18
80	Adsorption geometry of Cu()-(121)-14Xe. Surface Science, 2003, 539, 165-170	1.8	18
79	Looking behind the scenes: Raman spectroscopy of top-gated epitaxial graphene through the substrate. <i>New Journal of Physics</i> , 2013 , 15, 113006	2.9	17
78	Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001). <i>Beilstein Journal of Nanotechnology</i> , 2012 , 3, 179-85	3	17
77	Thermal stability of surface and interface structure of atomic layer deposited Al2O3 on H-terminated silicon. <i>Journal of Applied Physics</i> , 2007 , 102, 094503	2.5	17
76	Low-energy electron diffraction study of krypton on Cu(110). Surface Science, 2000, 454-456, 55-59	1.8	17
75	Interface-induced complex electronic interference structures in Ag films on Ge(111). <i>Physical Review B</i> , 2008 , 78,	3.3	16
74	Decoupling the Graphene Buffer Layer from SiC(0001) via Interface Oxidation. <i>Materials Science Forum</i> , 2012 , 717-720, 649-652	0.4	15
73	Robust graphene membranes in a silicon carbide frame. ACS Nano, 2013, 7, 4441-8	16.7	15
72	Rashba splitting of 100 meV in Au-intercalated graphene on SiC. <i>Applied Physics Letters</i> , 2016 , 108, 172	4954	15
71	Substrate induced nanoscale resistance variation in epitaxial graphene. <i>Nature Communications</i> , 2020 , 11, 555	17.4	14
70	Electronic Structure of Graphite/6H-SiC Interfaces. <i>Materials Science Forum</i> , 2007 , 556-557, 701-704	0.4	14
69	The adsorption geometry of Ag(1 1 1)[[[[]]]R19.1[]4Ar studied by LEED. <i>Surface Science</i> , 2001 , 475, 89-95	1.8	14
68	Healing of graphene on single crystalline Ni(111) films. <i>Applied Physics Letters</i> , 2014 , 105, 191612	3.4	13
67	Structural investigation of nanocrystalline graphene grown on (6B IbB)R30Breconstructed SiC surfaces by molecular beam epitaxy. <i>New Journal of Physics</i> , 2013 , 15, 123034	2.9	13

(2010-2010)

66	Influence of the growth conditions of epitaxial graphene on the film topography and the electron transport properties. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2010 , 42, 687-690	3	13
65	Electronic properties of clean unreconstructed 6HBiC(0001) surfaces studied by angle resolved photoelectron spectroscopy. <i>Surface Science</i> , 2006 , 600, 3845-3850	1.8	12
64	From a Cerium-Doped Polynuclear Bismuth Oxido Cluster to BiO:Ce. <i>Inorganic Chemistry</i> , 2020 , 59, 3353-3366	5.1	11
63	Synthesis and Properties of (BiSe)0.97MoSe2: A Heterostructure Containing Both 2H-MoSe2 and 1T-MoSe2. <i>Chemistry of Materials</i> , 2019 , 31, 5824-5831	9.6	11
62	Spin-resolved photoemission and ab initio theory of graphene/SiC. Physical Review B, 2013, 88,	3.3	11
61	Strain and Charge in Epitaxial Graphene on Silicon Carbide Studied by Raman Spectroscopy. <i>Materials Science Forum</i> , 2010 , 645-648, 603-606	0.4	11
60	Interface of atomic layer deposited Al2O3 on H-terminated silicon. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 2194-2199	1.6	11
59	Preparation and Characterization of Hydrogen Terminated 6H-SiC. <i>Materials Science Forum</i> , 2001 , 353-356, 223-226	0.4	11
58	Wet-Chemical Preparation of Silicate Adlayer Reconstructed SiC(0001) Surfaces as Studied by PES and LEED. <i>Materials Science Forum</i> , 2002 , 389-393, 717-720	0.4	11
57	A High-Resolution Photoemission Study of Hydrogen-Terminated 6H-SiC Surfaces. <i>Materials Science Forum</i> , 2002 , 389-393, 713-716	0.4	11
56	Structural Changes in 2D BiSe Bilayers as n Increases in (BiSe)(NbSe) (n = 1-4) Heterostructures. <i>ACS Nano</i> , 2016 , 10, 9489-9499	16.7	11
55	Manifestation of nonlocal electron-electron interaction in graphene. <i>Physical Review B</i> , 2016 , 94,	3.3	11
54	Growth and Intercalation of Graphene on Silicon Carbide Studied by Low-Energy Electron Microscopy. <i>Annalen Der Physik</i> , 2017 , 529, 1700046	2.6	10
53	Detecting the local transport properties and the dimensionality of transport of epitaxial graphene by a multi-point probe approach. <i>Applied Physics Letters</i> , 2013 , 102, 033110	3.4	10
52	Morphology and electronic properties of metal organic molecular beam epitaxy grown ZnO on hydrogen passivated 6H-SiC(0001)a). <i>Journal of Applied Physics</i> , 2008 , 103, 103720	2.5	10
51	The interaction of quasi-particles in graphene with chemical dopants. <i>New Journal of Physics</i> , 2010 , 12, 125014	2.9	9
50	Silicon Carbide Stacking-Order-Induced Doping Variation in Epitaxial Graphene. <i>Advanced Functional Materials</i> , 2020 , 30, 2004695	15.6	9
49	HREELS study of graphene formed on hexagonal silicon carbide. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2010 , 7, 394-397		8

48	Small scale rotational disorder observed in epitaxial graphene on SiC(0001). <i>New Journal of Physics</i> , 2013 , 15, 023019	2.9	7
47	Photoemission of Ga1N Mnx As with high Curie temperature and transformation into MnAs of zincblende structure. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 1435-1439	1.3	7
46	Initial Stages of Thermal Oxidation of 4H-SiC (11-20) Studied by Photoelectron Spectroscopy. <i>Materials Science Forum</i> , 2004 , 457-460, 1317-1320	0.4	7
45	Stacking rearrangement at 6HBiC(0001) surfaces during thermal hydrogenation. <i>Surface Science</i> , 2003 , 532-535, 698-704	1.8	7
44	Nickel enhanced graphene growth directly on dielectric substrates by molecular beam epitaxy. Journal of Applied Physics, 2016 , 120, 045309	2.5	7
43	Characterization of K and Cs adsorption on Fe(110). Surface Science, 1999 , 424, 278-289	1.8	6
42	Quasi-Freestanding Graphene on SiC(0001) by Ar-Mediated Intercalation of Antimony: A Route Toward Intercalation of High-Vapor-Pressure Elements. <i>Annalen Der Physik</i> , 2019 , 531, 1900199	2.6	6
41	Quasi-freestanding epitaxial graphene transistor with silicon nitride top gate. <i>Journal Physics D: Applied Physics,</i> 2014 , 47, 305103	3	5
40	Implanted bottom gate for epitaxial graphene on silicon carbide. <i>Journal Physics D: Applied Physics</i> , 2012 , 45, 154006	3	5
39	Transport Properties of Single-Layer Epitaxial Graphene on 6H-SiC (0001). <i>Materials Science Forum</i> , 2010 , 645-648, 637-641	0.4	5
38	The Atomic Structure of the Hydrogen Saturated a-Planes of 4H-SiC. <i>Materials Science Forum</i> , 2004 , 457-460, 395-398	0.4	5
37	Challenging the Durability of Intermetallic Mo-Ni Compounds in the Hydrogen Evolution Reaction. <i>ACS Applied Materials & Distriction (Materials & Distriction (Materials & Distriction) (Materials & Dis</i>	9.5	5
36	Charge transfer in (PbSe) (NbSe) and (SnSe) (NbSe) ferecrystals investigated by photoelectron spectroscopy. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 055001	1.8	4
35	Single Crystalline Metal Films as Substrates for Graphene Growth. <i>Annalen Der Physik</i> , 2017 , 529, 17000	23 6	4
34	Influence of structural properties on ballistic transport in nanoscale epitaxial graphene cross junctions. <i>Nanotechnology</i> , 2012 , 23, 395203	3.4	4
33	Surface Band Structure Studies of Si Rich Reconstructions on 4H-SiC(1-100). <i>Materials Science Forum</i> , 2005 , 483-485, 547-550	0.4	4
32	CoCrFeNi High-Entropy Alloy Thin Films Synthesised by Magnetron Sputter Deposition from Spark Plasma Sintered Targets. <i>Coatings</i> , 2021 , 11, 468	2.9	4
31	The interaction of Xe and Xe+K with graphene. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2011 , 183, 118-124	1.7	3

(2019-2004)

30	Structural and Electronic Properties of the 6H-SiC(0001)/Al2O3 Interface Prepared by Atomic Layer Deposition. <i>Materials Science Forum</i> , 2004 , 457-460, 1369-1372	0.4	3
29	Co as Adsorbate and Reaction Product in the Systems Fe(110)/Cs+Co and Fe(110)/Cs+Co2. <i>Surface Review and Letters</i> , 1998 , 05, 569-579	1.1	3
28	Ultrafast electronic linewidth broadening in the C 1s core level of graphene. <i>Physical Review B</i> , 2021 , 104,	3.3	3
27	Influence of Nanoarchitectures on Interlayer Interactions in Layered BiMoBe Heterostructures. Journal of Physical Chemistry C, 2021 , 125, 9469-9478	3.8	3
26	Electronic structure of designed [(SnSe)1+Im[TiSe2]2 heterostructure thin films with tunable layering sequence. <i>Journal of Materials Research</i> , 2019 , 34, 1965-1975	2.5	2
25	The Hall coefficient: a tool for characterizing graphene field effect transistors. <i>2D Materials</i> , 2014 , 1, 035004	5.9	2
24	Graphene Layers on Silicon Carbide Studied by Raman Spectroscopy. <i>Materials Science Forum</i> , 2008 , 600-603, 567-570	0.4	2
23	4H-SiC Metal-Oxide-Semiconductor (MOS) Capacitors Fabricated by Oxidation in a Tungsten Lamp Furnace in Combination with a Microwave Plasma and Subsequent Deposition of Al2O3. <i>Materials Science Forum</i> , 2007 , 556-557, 627-630	0.4	2
22	How the solid state matrix affects the chemical shift of core-level binding energies: A novel method to take the induction effect into account. <i>Solid State Communications</i> , 2006 , 139, 370-375	1.6	2
21	ALD Deposited Al2 O3 Films on 6H-SiC(0001) after Annealing in Hydrogen Atmosphere. <i>Materials Science Forum</i> , 2005 , 483-485, 559-562	0.4	2
20	Hydrogen-Saturated SiC-Surfaces: Model Systems for Studies of Passivation, Reconstruction and Interface Formation. <i>Materials Science Forum</i> , 2005 , 483-485, 535-540	0.4	2
19	Epitaxial growth and the electronic structure of MgSe on ZnSe/GaAs (001). <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2001 , 114-116, 527-532	1.7	2
18	LEED AND STM STUDY OF Cs ON Cu(211). Surface Review and Letters, 1999, 06, 865-870	1.1	2
17	Synthesis and Electrical Properties of a New Compound (BiSe)0.97(Bi2Se3)1.26(BiSe)0.97(MoSe2) Containing Metallic 1T-MoSe2. <i>Chemistry of Materials</i> , 2021 , 33, 6403-6411	9.6	2
16	Annealing effects on a-SiC:H and a-SiCN:H films deposited by plasma CVD methods. <i>Vacuum</i> , 2020 , 178, 109410	3.7	1
15	Silicon Nitride as Top Gate Dielectric for Epitaxial Graphene. <i>Materials Science Forum</i> , 2013 , 740-742, 149-152	0.4	1
14	Mapping disorderBrder induced changes to the Fermi surface of Cu3Au using a new toroidal electron energy analyser. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2005 , 144-147, 515.	-518	1
13	Growth of Nanocrystalline MoSe2 Monolayers on Epitaxial Graphene from Amorphous Precursors. <i>Physica Status Solidi (B): Basic Research</i> , 2019 , 256, 1800283	1.3	1

12	Stacking Relations and Substrate Interaction of Graphene on Copper Foil. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2002025	4.6	1
11	Epitaxial Graphene on SiC(0001). Nanoscience and Technology, 2011 , 135-159	0.6	O
10	Electronic band structure of Bi-intercalate layers in graphene and SiC(0001). <i>Journal of the Korean Physical Society</i> , 2021 , 78, 157-163	0.6	О
9	Growth of Nanocrystalline MoSe2 Monolayers on Epitaxial Graphene from Amorphous Precursors (Phys. Status Solidi B 2/2019). <i>Physica Status Solidi (B): Basic Research</i> , 2019 , 256, 1970015	1.3	
8	Surfaces, Interfaces, and Nanostructures: Spectroscopic Characterization and Applications. <i>Physica Status Solidi (B): Basic Research</i> , 2019 , 256, 1900027	1.3	
7	Backside Monitoring of Graphene on Silicon Carbide by Raman Spectroscopy. <i>Materials Science Forum</i> , 2014 , 778-780, 1166-1169	0.4	
6	Gated Epitaxial Graphene Devices. <i>Materials Science Forum</i> , 2012 , 717-720, 675-678	0.4	
5	Surface, interface and bulk properties of GaAs(111)B treated by Se layers. <i>Journal Physics D: Applied Physics</i> , 2001 , 34, 678-682	3	
4	Effect of an Intermediate Graphite Layer on the Electronic Properties of Metal/SiC Contacts35-50		
3	Epitaxial Graphene: A New Material453-472		
2	Alternative Techniques to Reduce Interface Traps in n-Type 4H-SiC MOS Capacitors193-214		
1	Hardness Enhancement in CoCrFeNi1⊠(WC)x High-Entropy Alloy Thin Films Synthesised by Magnetron Co-Sputtering. <i>Coatings</i> , 2022 , 12, 269	2.9	