## Michael Naguib

# List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4766679/michael-naguib-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

| 102                | 27,749                | 53                  | 119             |
|--------------------|-----------------------|---------------------|-----------------|
| papers             | citations             | h-index             | g-index         |
| 119<br>ext. papers | 33,914 ext. citations | <b>9.</b> 8 avg, IF | 7.32<br>L-index |

| #   | Paper                                                                                                                                                                                                                                                 | IF    | Citations |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 102 | Two-dimensional titanium carbonitride MXene as a highly efficient electrocatalyst for hydrogen evolution reaction. <i>Materials Reports Energy</i> , <b>2022</b> , 2, 100075                                                                          |       | 2         |
| 101 | Transition Metal Carbo-Chalcogenide "TMCC" a New Family of Two-dimensional Materials <i>Advanced Materials</i> , <b>2022</b> , e2200574                                                                                                               | 24    | 1         |
| 100 | Engineering the Interlayer Spacing by Pre-Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid. <i>Advanced Functional Materials</i> , <b>2021</b> , 31, 2104007                                       | 15.6  | 17        |
| 99  | Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors. <i>Materials Today Advances</i> , <b>2021</b> , 10, 100139                                                                                                          | 7.4   | 15        |
| 98  | In Situ TEM Investigation of Lithium Intercalation in Ti3C2TX MXenes for Energy Storage Applications. <i>Microscopy and Microanalysis</i> , <b>2021</b> , 27, 2736-2737                                                                               | 0.5   | 1         |
| 97  | Egyptian blue: from pigment to battery electrodes RSC Advances, 2021, 11, 19885-19889                                                                                                                                                                 | 3.7   | 1         |
| 96  | Improved synthesis of TiCT MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. <i>Nanoscale</i> , <b>2021</b> , 13, 3572-3580                                                                    | 7.7   | 59        |
| 95  | MXene Reinforced Thermosetting Composite for Lightning Strike Protection of Carbon Fiber Reinforced Polymer. <i>Advanced Materials Interfaces</i> , <b>2021</b> , 8, 2100803                                                                          | 4.6   | 3         |
| 94  | Engineering the Interlayer Spacing by Pre-Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid (Adv. Funct. Mater. 33/2021). <i>Advanced Functional Materials</i> , <b>2021</b> , 31, 2170246          | 15.6  | 1         |
| 93  | Ten Years of Progress in the Synthesis and Development of MXenes. Advanced Materials, 2021, 33, e210                                                                                                                                                  | 33493 | 91        |
| 92  | Safer lithium-ion battery anode based on Ti3C2Tz MXene with thermal safety mechanistic elucidation. <i>Chemical Engineering Journal</i> , <b>2021</b> , 419, 129387                                                                                   | 14.7  | 5         |
| 91  | Pre-Sodiated TiCT MXene Structure and Behavior as Electrode for Sodium-Ion Capacitors. <i>ACS Nano</i> , <b>2021</b> , 15, 2994-3003                                                                                                                  | 16.7  | 21        |
| 90  | Synthesis of new two-dimensional titanium carbonitride Ti 2 C 0 . 5 N 0 .5 T x MXene and its performance as an. <i>Informal</i> Materilly, <b>2021</b> , 3, 1422-1430                                                                                 | 23.1  | 6         |
| 89  | Juggling Surface Charges of 2D Niobium Carbide MXenes for a Reactive Oxygen Species Scavenging and Effective Targeting of the Malignant Melanoma Cell Cycle into Programmed Cell Death. ACS Sustainable Chemistry and Engineering, 2020, 8, 7942-7951 | 8.3   | 19        |
| 88  | Nature of Terminating Hydroxyl Groups and Intercalating Water in Ti3C2Tx MXenes: A Study by 1H Solid-State NMR and DFT Calculations. <i>Journal of Physical Chemistry C</i> , <b>2020</b> , 124, 13649-13655                                          | 3.8   | 19        |
| 87  | Impact of Cation Intercalation on the Electronic Structure of TiCT MXenes in Sulfuric Acid. <i>ACS Applied Materials &amp; District Acid.</i> 2020, 12, 15087-15094                                                                                   | 9.5   | 17        |
| 86  | Tracking ion intercalation into layered Ti3C2 MXene films across length scales. <i>Energy and Environmental Science</i> , <b>2020</b> , 13, 2549-2558                                                                                                 | 35.4  | 54        |

### (2019-2020)

| 85 | Spatially resolved X-ray absorption spectroscopy investigation of individual cation-intercalated multi-layered Ti3C2Tx MXene particles. <i>Applied Surface Science</i> , <b>2020</b> , 530, 147157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.7     | 5   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 84 | Large interlayer spacing NbCT (MXene) promotes the ultrasensitive electrochemical detection of Pb on glassy carbon electrodes <i>RSC Advances</i> , <b>2020</b> , 10, 24697-24704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7     | 11  |
| 83 | Plasma Synthesis of Spherical Crystalline and Amorphous Electrolyte Nanopowders for Solid-State Batteries. <i>ACS Applied Materials &amp; Date of Solid-State and Amorphous Electrolyte</i> Nanopowders for Solid-State Batteries. <i>ACS Applied Materials &amp; Date of Solid-State and Amorphous Electrolyte</i> Nanopowders for Solid-State Batteries. <i>ACS Applied Materials &amp; Date of Solid-State and Amorphous Electrolyte</i> Nanopowders for Solid-State Batteries. <i>ACS Applied Materials &amp; Date of Solid-State and Amorphous Electrolyte</i> Nanopowders for Solid-State Batteries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.5     | 4   |
| 82 | Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene. <i>Advanced Materials Interfaces</i> , <b>2020</b> , 7, 1902207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6     | 18  |
| 81 | Proton Redox and Transport in MXene-Confined Water. <i>ACS Applied Materials &amp; Discourse amp; Interfaces</i> , <b>2020</b> , 12, 763-770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.5     | 18  |
| 80 | Effect of Sheet Size and Atomic Structure on the Antibacterial Activity of Nb-MXene Nanosheets. <i>ACS Applied Nano Materials</i> , <b>2020</b> , 3, 11372-11382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.6     | 21  |
| 79 | Nb-based MXenes for efficient electrochemical sensing of small biomolecules in the anodic potential. <i>Electrochemistry Communications</i> , <b>2020</b> , 119, 106811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.1     | 17  |
| 78 | Ionic liquid-based synthesis of MXene. <i>Chemical Communications</i> , <b>2020</b> , 56, 11082-11085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.8     | 33  |
| 77 | Catalytic Activity of Ti-based MXenes for the Hydrogenation of Furfural. <i>ChemCatChem</i> , <b>2020</b> , 12, 5733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -5,7,42 | 8   |
| 76 | Structure and Dynamics of Aqueous Electrolytes Confined in 2D-TiO/TiCT MXene Heterostructures. <i>ACS Applied Materials &amp; Description of Action (Confidence of Action of Action of Action of Action of Action of Action (Confidence of Action </i>                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.5     | 4   |
| 75 | Electrochemical performance of two-dimensional Ti3C2-Mn3O4 nanocomposites and carbonized iron cations for hybrid supercapacitor electrodes. <i>Electrochimica Acta</i> , <b>2019</b> , 301, 487-499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.7     | 38  |
| 74 | Monolayer Ti3C2Tx as an Effective Co-catalyst for Enhanced Photocatalytic Hydrogen Production over TiO2. <i>ACS Applied Energy Materials</i> , <b>2019</b> , 2, 4640-4651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.1     | 113 |
| 73 | High Dielectric Constant and Low Dielectric Loss via Poly(vinyl alcohol)/TiCT MXene Nanocomposites. <i>ACS Applied Materials &amp; Acs Applied &amp; A</i> | 9.5     | 78  |
| 72 | Unraveling the Nanoscale Heterogeneity of Solid Electrolyte Interphase Using Tip-Enhanced Raman Spectroscopy. <i>Joule</i> , <b>2019</b> , 3, 2001-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.8    | 66  |
| 71 | Interfacial Reactions and Performance of LiLaZrO-Stabilized Li-Sulfur Hybrid Cell. <i>ACS Applied Materials &amp; Discourse Materials &amp; Di</i>                                                 | 9.5     | 23  |
| 70 | Effect of Synthesis Methods on the Structure and Defects of Two-Dimensional MXenes <b>2019</b> , 111-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 1   |
| 69 | Chemical and Electrochemical Intercalation of Ions and Molecules into MXenes <b>2019</b> , 161-175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 2   |
| 68 | 2D/2D heterojunction of TiC/g-CN nanosheets for enhanced photocatalytic hydrogen evolution. <i>Nanoscale</i> , <b>2019</b> , 11, 8138-8149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.7     | 197 |

| 67 | Computational Screening of MXene Electrodes for Pseudocapacitive Energy Storage. <i>Journal of Physical Chemistry C</i> , <b>2019</b> , 123, 315-321                                       | 3.8          | 47  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
| 66 | Understanding the MXene Pseudocapacitance. <i>Journal of Physical Chemistry Letters</i> , <b>2018</b> , 9, 1223-1228                                                                       | 3 6.4        | 133 |
| 65 | One-Step Synthesis of Nb O /C/Nb C (MXene) Composites and Their Use as Photocatalysts for Hydrogen Evolution. <i>ChemSusChem</i> , <b>2018</b> , 11, 688-699                               | 8.3          | 223 |
| 64 | Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries. <i>ACS Applied Materials &amp; Discrete Section</i> , 10, 3470-3478       | 9.5          | 61  |
| 63 | Complexity of Intercalation in MXenes: Destabilization of Urea by Two-Dimensional Titanium Carbide. <i>Journal of the American Chemical Society</i> , <b>2018</b> , 140, 10305-10314       | 16.4         | 58  |
| 62 | A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. <i>Journal of Materials Chemistry A</i> , <b>2018</b> , 6, 12733-12743           | 13           | 124 |
| 61 | Limiting Internal Short-Circuit Damage by Electrode Partition for Impact-Tolerant Li-Ion Batteries.<br>Joule, <b>2018</b> , 2, 155-167                                                     | 27.8         | 29  |
| 60 | Multi-modal, ultrasensitive, wide-range humidity sensing with TiC film. <i>Nanoscale</i> , <b>2018</b> , 10, 21689-2169                                                                    | <b>95</b> .7 | 45  |
| 59 | High Areal Capacity Si/LiCoO Batteries from Electrospun Composite Fiber Mats. <i>ChemSusChem</i> , <b>2017</b> , 10, 1823-1831                                                             | 8.3          | 14  |
| 58 | Synergetic effects of K and Mg ion intercalation on the electrochemical and actuation properties of the two-dimensional TiC MXene. <i>Faraday Discussions</i> , <b>2017</b> , 199, 393-403 | 3.6          | 50  |
| 57 | Impact of air exposure and surface chemistry on Lilli7La3Zr2O12 interfacial resistance. <i>Journal of Materials Chemistry A</i> , <b>2017</b> , 5, 13475-13487                             | 13           | 195 |
| 56 | Electrochemical performance of MXenes as K-ion battery anodes. <i>Chemical Communications</i> , <b>2017</b> , 53, 6883-6886                                                                | 5.8          | 106 |
| 55 | Multimodality of Structural, Electrical, and Gravimetric Responses of Intercalated MXenes to Water. <i>ACS Nano</i> , <b>2017</b> , 11, 11118-11126                                        | 16.7         | 127 |
| 54 | Calorimetric Study of Alkali Metal Ion (K+, Na+, Li+) Exchange in a Clay-Like MXene. <i>Journal of Physical Chemistry C</i> , <b>2017</b> , 121, 15145-15153                               | 3.8          | 26  |
| 53 | Evidence of molecular hydrogen trapped in two-dimensional layered titanium carbide-based MXene. <i>Physical Review Materials</i> , <b>2017</b> , 1,                                        | 3.2          | 13  |
| 52 | Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers. <i>Physical Review Materials</i> , <b>2017</b> , 1,                              | 3.2          | 35  |
| 51 | Calorimetric Determination of Thermodynamic Stability of MAX and MXene Phases. <i>Journal of Physical Chemistry C</i> , <b>2016</b> , 120, 28131-28137                                     | 3.8          | 28  |
| 50 | Ti3C2Tx (MXene)polyacrylamide nanocomposite films. <i>RSC Advances</i> , <b>2016</b> , 6, 72069-72073                                                                                      | 3.7          | 112 |

### (2014-2016)

| 49 | Nanoscale Elastic Changes in 2D Ti3C2Tx (MXene) Pseudocapacitive Electrodes. <i>Advanced Energy Materials</i> , <b>2016</b> , 6, 1502290                                                        | 21.8 | 92   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| 48 | Two-Dimensional Nb-Based M4C3 Solid Solutions (MXenes). <i>Journal of the American Ceramic Society</i> , <b>2016</b> , 99, 660-666                                                              | 3.8  | 153  |
| 47 | Anodized Ti3SiC2 As an Anode Material for Li-ion Microbatteries. <i>ACS Applied Materials &amp; Amp; Interfaces</i> , <b>2016</b> , 8, 16670-6                                                  | 9.5  | 28   |
| 46 | Titania Composites with 2 D Transition Metal Carbides as Photocatalysts for Hydrogen Production under Visible-Light Irradiation. <i>ChemSusChem</i> , <b>2016</b> , 9, 1490-7                   | 8.3  | 173  |
| 45 | Resolving the Structure of Ti3C2Tx MXenes through Multilevel Structural Modeling of the Atomic Pair Distribution Function. <i>Chemistry of Materials</i> , <b>2016</b> , 28, 349-359            | 9.6  | 267  |
| 44 | X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). <i>Applied Surface Science</i> , <b>2016</b> , 362, 406-417                                        | 6.7  | 834  |
| 43 | The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). <i>Nanoscale</i> , <b>2016</b> , 8, 9128-33                                              | 7.7  | 161  |
| 42 | Effect of Metal Ion Intercalation on the Structure of MXene and Water Dynamics on its Internal Surfaces. <i>ACS Applied Materials &amp; Dynamics amp; Interfaces</i> , <b>2016</b> , 8, 8859-63 | 9.5  | 164  |
| 41 | Synthesis and Characterization of 2D Molybdenum Carbide (MXene). <i>Advanced Functional Materials</i> , <b>2016</b> , 26, 3118-3127                                                             | 15.6 | 640  |
| 40 | High-Temperature Neutron Diffraction, Raman Spectroscopy, and First-Principles Calculations of Ti3SnC2 and Ti2SnC. <i>Journal of the American Ceramic Society</i> , <b>2016</b> , 99, 2233-2242 | 3.8  | 10   |
| 39 | Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials. <i>Chemistry of Materials</i> , <b>2016</b> , 28, 3937-3943          | 9.6  | 172  |
| 38 | Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes". <i>Dalton Transactions</i> , <b>2015</b> , 44, 9353-8                                            | 4.3  | 405  |
| 37 | High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries. <i>Electrochimica Acta</i> , <b>2015</b> , 163, 246-251                                                   | 6.7  | 169  |
| 36 | Controlling the actuation properties of MXene paper electrodes upon cation intercalation. <i>Nano Energy</i> , <b>2015</b> , 17, 27-35                                                          | 17.1 | 135  |
| 35 | Synthesis of two-dimensional materials by selective extraction. <i>Accounts of Chemical Research</i> , <b>2015</b> , 48, 128-35                                                                 | 24.3 | 456  |
| 34 | Direct Measurement of Surface Termination Groups and Their Connectivity in the 2D MXene V2CTx Using NMR Spectroscopy. <i>Journal of Physical Chemistry C</i> , <b>2015</b> , 119, 13713-13720   | 3.8  | 113  |
| 33 | 25th anniversary article: MXenes: a new family of two-dimensional materials. <i>Advanced Materials</i> , <b>2014</b> , 26, 992-1005                                                             | 24   | 3141 |
| 32 | Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. <i>Angewandte Chemie - International Edition</i> , <b>2014</b> , 53, 4877-80                        | 16.4 | 86   |

| 31 | One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. <i>Chemical Communications</i> , <b>2014</b> , 50, 7420-3 | 5.8  | 427  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| 30 | Synthesis and characterization of two-dimensional Nb4C3 (MXene). <i>Chemical Communications</i> , <b>2014</b> , 50, 9517-20                                                                   | 5.8  | 321  |
| 29 | TillimXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. <i>ACS Applied Materials &amp; Amp; Interfaces</i> , <b>2014</b> , 6, 11173-9                       | 9.5  | 847  |
| 28 | Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. <i>ACS Nano</i> , <b>2014</b> , 8, 9606-15                                                           | 16.7 | 644  |
| 27 | Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. <i>Journal of the American Chemical Society</i> , <b>2014</b> , 136, 6385-94        | 16.4 | 864  |
| 26 | Room-Temperature Carbide-Derived Carbon Synthesis by Electrochemical Etching of MAX Phases. <i>Angewandte Chemie</i> , <b>2014</b> , 126, 4977-4980                                           | 3.6  | 23   |
| 25 | Innentitelbild: Room-Temperature Carbide-Derived Carbon Synthesis by Electrochemical Etching of MAX Phases (Angew. Chem. 19/2014). <i>Angewandte Chemie</i> , <b>2014</b> , 126, 4820-4820    | 3.6  |      |
| 24 | Two-Dimensional Materials: 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials (Adv. Mater. 7/2014). <i>Advanced Materials</i> , <b>2014</b> , 26, 982-982            | 24   | 85   |
| 23 | Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: Electronic structure versus boundary effects. <i>Physical Review B</i> , <b>2014</b> , 89,                             | 3.3  | 90   |
| 22 | Structure of nanocrystalline Ti3C2 MXene using atomic pair distribution function. <i>Physical Review Letters</i> , <b>2014</b> , 112, 125501                                                  | 7.4  | 129  |
| 21 | New Solid Solution MAX Phases: (Ti0.5, V0.5)3AlC2, (Nb0.5, V0.5)2AlC, (Nb0.5, V0.5)4AlC3 and (Nb0.8, Zr0.2)2AlC. <i>Materials Research Letters</i> , <b>2014</b> , 2, 233-240                 | 7.4  | 85   |
| 20 | New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries.<br>Journal of the American Chemical Society, <b>2013</b> , 135, 15966-9                        | 16.4 | 1168 |
| 19 | Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. <i>Science</i> , <b>2013</b> , 341, 1502-5                                                          | 33.3 | 2510 |
| 18 | Photocatalytic WO3 and TiO2 Films on Brass. <i>International Journal of Applied Ceramic Technology</i> , <b>2013</b> , 10, 26-32                                                              | 2    | 5    |
| 17 | Intercalation and delamination of layered carbides and carbonitrides. <i>Nature Communications</i> , <b>2013</b> , 4, 1716                                                                    | 17.4 | 1504 |
| 16 | Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. <i>Materials Chemistry and Physics</i> , <b>2013</b> , 139, 147-152                                                        | 4.4  | 227  |
| 15 | MXene: a promising transition metal carbide anode for lithium-ion batteries. <i>Electrochemistry Communications</i> , <b>2012</b> , 16, 61-64                                                 | 5.1  | 963  |
| 14 | Comment on III is Al2C3: A New Ternary Carbide Belonging to MAX Phases in the TiAlC System Journal of the American Ceramic Society, 2012, 95, 3352-3354                                       | 3.8  | 11   |

#### LIST OF PUBLICATIONS

| 13 | Tensile creep of Ti2AlC in air in the temperature range 1000🛮 150 ீ C. <i>Scripta Materialia</i> , <b>2012</b> , 66, 805-80                                                                   | 085.6         | 32   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|
| 12 | Structure of a new bulk Ti5Al2C3 MAX phase produced by the topotactic transformation of Ti2AlC. <i>Journal of the European Ceramic Society</i> , <b>2012</b> , 32, 3485-3491                  | 6             | 42   |
| 11 | First-order Raman scattering of the MAX phases: Ti2AlN, Ti2AlC0.5N0.5, Ti2AlC, (Ti0.5V0.5)2AlC, V2AlC, Ti3AlC2, and Ti3GeC2. <i>Journal of Raman Spectroscopy</i> , <b>2012</b> , 43, 168-172 | 2.3           | 109  |
| 10 | A Non-Aqueous Asymmetric Cell with a Ti2C-Based Two-Dimensional Negative Electrode. <i>Journal of the Electrochemical Society</i> , <b>2012</b> , 159, A1368-A1373                            | 3.9           | 270  |
| 9  | Two-dimensional transition metal carbides. ACS Nano, 2012, 6, 1322-31                                                                                                                         | 16.7          | 2382 |
| 8  | First principles study of two-dimensional early transition metal carbides. <i>MRS Communications</i> , <b>2012</b> , 2, 133-137                                                               | 2.7           | 316  |
| 7  | First-order Raman scattering of the MAX phases Ta4AlC3, Nb4AlC3, Ti4AlN3, and Ta2AlC. <i>Journal of Raman Spectroscopy</i> , <b>2012</b> , 43, 954-958                                        | 2.3           | 28   |
| 6  | On the Topotactic Transformation of Ti2AlC into a Tiガ Cubic Phase by Heating in Molten Lithium Fluoride in Air. <i>Journal of the American Ceramic Society</i> , <b>2011</b> , 94, 4556-4561  | 3.8           | 59   |
| 5  | Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Advanced Materials, 2011, 23, 4248                                                                                          | -5 <b>3</b> 4 | 4846 |
| 4  | Synthesis of a new nanocrystalline titanium aluminum fluoride phase by reaction of Ti2AlC with hydrofluoric acid. <i>RSC Advances</i> , <b>2011</b> , 1, 1493                                 | 3.7           | 35   |
| 3  | Time-Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution. <i>Advanced Sustainable Systems</i> ,2100383                                                                 | 5.9           | O    |
| 2  | Theoretical Insights into MXene Termination and Surface Charge Regulation. <i>Journal of Physical Chemistry C</i> ,                                                                           | 3.8           | 2    |
| 1  | Layered Nano-Mosaic of Niobium Disulfide Heterostructures by Direct Sulfidation of Niobium Carbide MXenes for Hydrogen Evolution. <i>Advanced Materials Interfaces</i> ,2102185               | 4.6           | 1    |