Tuomo Sainio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4766175/publications.pdf

Version: 2024-02-01

361296 434063 1,274 75 20 31 h-index citations g-index papers 75 75 75 1185 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adsorption of Ni2+, Cd2+, PO43â^' and NO3â^' from aqueous solutions by nanostructured microfibrillated cellulose modified with carbonated hydroxyapatite. Chemical Engineering Journal, 2014, 252, 64-74.	6.6	114
2	Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass. Bioresource Technology, 2011, 102, 6048-6057.	4.8	76
3	Enhanced membrane filtration of wood hydrolysates for hemicelluloses recovery by pretreatment with polymeric adsorbents. Bioresource Technology, 2013, 143, 275-281.	4.8	47
4	Recovering rare earth elements from phosphogypsum using a resin-in-leach process: Selection of resin, leaching agent, and eluent. Hydrometallurgy, 2019, 189, 105125.	1.8	45
5	Analysis of steady state recycling chromatography using equilibrium theory. Separation and Purification Technology, 2009, 66, 9-18.	3.9	41
6	Chromatographic Recovery of Monosaccharides for the Production of Bioethanol from Wood. Industrial & Engineering Chemistry Research, 2010, 49, 2907-2915.	1.8	40
7	Ethanol production from wood via concentrated acid hydrolysis, chromatographic separation, and fermentation. Journal of Chemical Technology and Biotechnology, 2012, 87, 689-696.	1.6	38
8	Ion exchange recovery of rhenium from industrially relevant sulfate solutions: Single column separations and modeling. Hydrometallurgy, 2015, 158, 74-82.	1.8	37
9	Adiabatic operation of chromatographic fixed-bed reactors. Chemical Engineering Journal, 2011, 168, 861-871.	6.6	34
10	Purification process for recovering hydroxy acids from soda black liquor. Chemical Engineering Research and Design, 2013, 91, 2765-2774.	2.7	34
11	Unified design of chromatographic separation processes. Chemical Engineering Science, 2015, 122, 436-451.	1.9	33
12	Production and recovery of monosaccharides from lignocellulose hot water extracts in a pulp mill biorefinery. Bioresource Technology, 2013, 135, 730-737.	4.8	30
13	Effect of porogen solvent on the properties of nickel ion imprinted polymer materials prepared by inverse suspension polymerization. European Polymer Journal, 2017, 87, 124-135.	2.6	30
14	Theoretical analysis of steady state recycling chromatography with solvent removal. Separation and Purification Technology, 2011, 78, 21-32.	3.9	25
15	Modeling of chromatographic separation of concentrated-acid hydrolysates. Separation and Purification Technology, 2011, 80, 610-619.	3.9	25
16	Explicit equations for the height and position of the first component shock for binary mixtures with competitive Langmuir isotherms under ideal conditions. Journal of Chromatography A, 2011, 1218, 6379-6387.	1.8	22
17	Polyacrylonitrile-encapsulated amorphous zirconium phosphate composite adsorbent for Co, Nd and Dy separations. Chemical Engineering Journal, 2018, 351, 832-840.	6.6	22
18	Separation and recovery of lignin from hydrolysates of lignocellulose with a polymeric adsorbent. Separation and Purification Technology, 2017, 186, 125-134.	3.9	22

#	Article	IF	CITATIONS
19	Use of Adsorbed Solution theory to model competitive and co-operative sorption on elastic ion exchange resins. Separation and Purification Technology, 2012, 95, 235-247.	3.9	21
20	Recovery of ReO4â^ by weakly basic anion exchangers: Modeling of sorption equilibrium and rate. Separation and Purification Technology, 2015, 153, 19-28.	3.9	21
21	Effect of template ion–ligand complex stoichiometry on selectivity of ion-imprinted polymers. Talanta, 2015, 134, 538-545.	2.9	21
22	Numerical simulation of counter-current liquid–liquid extraction for recovering Co, Ni and Li from lithium-ion battery leachates of varying composition. Separation and Purification Technology, 2019, 210, 530-540.	3.9	21
23	Phase equilibria in solvent mixture–ion exchange resin catalyst systems. Fluid Phase Equilibria, 2004, 218, 269-283.	1.4	20
24	Modelling and performance evaluation of chromatographic monosaccharide recovery from concentrated acid lignocellulosic hydrolysates. Journal of Chemical Technology and Biotechnology, 2012, 87, 1676-1686.	1.6	20
25	Chromatographic recovery and purification of natural phytochemicals from underappreciated willow bark water extracts. Separation and Purification Technology, 2021, 261, 118247.	3.9	19
26	Electrolyte exclusion chromatography using a multi-column recycling process: Fractionation of concentrated acid lignocellulosic hydrolysate. Separation and Purification Technology, 2014, 129, 137-149.	3.9	18
27	Design of bypass-simulated moving bed chromatography for reduced purity requirements. Chemical Engineering Science, 2019, 205, 401-413.	1.9	17
28	Modeling of adsorptive removal of benzalkonium chloride from water with a polymeric adsorbent. Separation and Purification Technology, 2009, 69, 185-194.	3.9	16
29	Modeling the phase equilibrium in liquid–liquid extraction of copper over a wide range of copper and hydroxyoxime extractant concentrations. Chemical Engineering Science, 2017, 171, 88-99.	1.9	15
30	Recovery of valuable metals from argon oxygen decarburization (AOD) dusts by leaching, filtration and solvent extraction. Hydrometallurgy, 2013, 140, 181-189.	1.8	14
31	Comparison of ion exchange process configurations for arsenic removal from natural waters. Desalination and Water Treatment, 2016, 57, 13770-13781.	1.0	14
32	Ion exchange in complexing media – Nickel removal from ammoniacal ammonium sulfate solutions. Chemical Engineering Journal, 2019, 373, 831-839.	6.6	14
33	Selective acid leaching of rare earth elements from roasted NdFeB magnets. Separation and Purification Technology, 2021, 278, 119571.	3.9	14
34	Novel chromatographic process for the recovery and purification of hydroxy acids from alkaline spent pulping liquors. Chemical Engineering Science, 2019, 197, 87-97.	1.9	13
35	Adsorption of cationic surfactants on a neutral polymer adsorbent: Investigation of the interactions by using mathematical modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 358, 57-67.	2.3	12
36	Steady state recycling chromatography with an integrated solvent removal unit $\hat{a} \in \text{``Separation of glucose}$ and galactose. Journal of Chromatography A, 2012, 1251, 122-133.	1.8	12

#	Article	IF	Citations
37	Evolutionary multi-objective optimization based comparison of multi-column chromatographic separation processes for a ternary separation. Journal of Chromatography A, 2014, 1358, 181-191.	1.8	12
38	Chromatographic separation of ethyl- \hat{l}^2 -d-glucopyranoside and d-glucose with steady-state recycling chromatography. Separation and Purification Technology, 2016, 169, 262-272.	3.9	12
39	Effect of separation material particle size on pressure drop and process efficiency in continuous chromatographic separation of glucose and fructose. Separation and Purification Technology, 2018, 193, 317-326.	3.9	12
40	Size-exclusion chromatographic separation of hydroxy acids and sodium hydroxide in spent pulping liquor. Separation and Purification Technology, 2013, 118, 234-241.	3.9	11
41	Nickel retention by an ion-imprinted polymer: Wide-range selectivity study and modelling of the binding structures. Chemical Engineering Journal, 2016, 304, 20-28.	6.6	11
42	Co-eluent effect in partition chromatography. Rhamnose–xylose separation with strong and weak cation-exchangers in aqueous ethanol. Journal of Chromatography A, 2002, 982, 69-84.	1.8	10
43	Intensification of metal extraction with high-shear mixing. Chemical Engineering and Processing: Process Intensification, 2013, 73, 119-128.	1.8	10
44	Adsorption of Bisphenol A from Water-Ethanol Mixtures on Pulverized Activated Carbon. Separation Science and Technology, 2014, 49, 763-772.	1.3	10
45	Steady state recycling chromatography with solvent removalâ€"Effect of solvent removal constraints on process operation under ideal conditions. Journal of Chromatography A, 2014, 1341, 15-30.	1.8	10
46	Acid hydrolysis of glycosidic bonds in oat βâ€glucan and development of a structured kinetic model. AICHE Journal, 2018, 64, 2570-2580.	1.8	10
47	Montmorillonite-anchored magnetite nanocomposite for recovery of ammonium from stormwater and its reuse in adsorption of Sc3+. Nanotechnology for Environmental Engineering, 2021, 6, 1.	2.0	9
48	Design of batch chromatography for separation of binary mixtures under reduced purity requirements. Journal of Chromatography A, 2013, 1286, 55-68.	1.8	8
49	Complexation of Nickel with 2-(Aminomethyl)pyridine at High Zinc Concentrations or in a Nonaqueous Solvent Mixture. Journal of Chemical & Engineering Data, 2014, 59, 2207-2214.	1.0	8
50	Robustness of steady state recycling chromatography with an integrated solvent removal unit. Journal of Chromatography A, 2015, 1391, 31-39.	1.8	8
51	Chromatographic fractionation of complex mixtures of hydroxy carboxylic acids. Separation and Purification Technology, 2019, 221, 349-362.	3.9	8
52	Evolution of the molar mass distribution of oat \hat{l}^2 -glucan during acid catalyzed hydrolysis in aqueous solution. Chemical Engineering Journal, 2020, 382, 122863.	6.6	8
53	Continuous ion exchange for hydrometallurgy: Purification of Ag(I)–NaCl from divalent metals with aminomethylphosphonic resin using counter-current and cross-current operation. Hydrometallurgy, 2014, 142, 84-93.	1.8	7
54	Unified Design of chromatographic processes with timed events: Separation of ternary mixtures. Chemical Engineering Science, 2016, 152, 547-567.	1.9	7

#	Article	IF	Citations
55	Bypass chromatography – design and analysis of an improved strategy for operating batch chromatography processes. Journal of Chromatography A, 2012, 1230, 77-92.	1.8	6
56	Moment based weighted residual methodâ€"New numerical tool for a nonlinear multicomponent chromatographic general rate model. Computers and Chemical Engineering, 2013, 53, 153-163.	2.0	6
57	In situ complexation versus complex isolation in synthesis of ion imprinted polymers. Reactive and Functional Polymers, 2018, 122, 1-8.	2.0	6
58	Chromatographic fractionation of a ternary mixture with an SMB cascade process: The effect of ion exchange resin cross-linkage on separation efficiency. Separation and Purification Technology, 2018, 206, 286-296.	3.9	6
59	Steady-state recycling chromatography in the purification of weakly acidic lignocellulosic hydrolysates. Separation and Purification Technology, 2019, 210, 670-681.	3.9	6
60	Controlled partial neutralization of amphoteric ion exchange resin for improved metals separation. Reactive and Functional Polymers, 2013, 73, 647-652.	2.0	5
61	Recovery of metal oxoanions from basic solutions using cooperative sorption – Separation of Na2MoO4 and NaOH. Chemical Engineering Journal, 2018, 341, 578-587.	6.6	5
62	Chromatographic Recovery of Monosaccharides and Lignin from Lignocellulosic Hydrolysates. Chemical Engineering and Technology, 2018, 41, 2402-2410.	0.9	5
63	Ion exchange purification of a silver nitrate electrolyte. Minerals Engineering, 2019, 132, 175-182.	1.8	5
64	Intermittent recycle-integrated reactor-separator for production of well-defined non-digestible oligosaccharides from oat \hat{l}^2 -glucan. Chemical Engineering Journal, 2021, 410, 128352.	6.6	5
65	A new moment analysis method to estimate the characteristic parameters in chromatographic general rate model. Computers and Chemical Engineering, 2013, 55, 50-60.	2.0	4
66	Chromatographic Fractionation of Lignocellulosic Hydrolysates. Advances in Chemical Engineering, 2013, 42, 261-349.	0.5	4
67	Synthesis of hydrometallurgical processes for valorization of secondary raw materials using ant colony optimization and key performance indicators. Hydrometallurgy, 2015, 153, 121-133.	1.8	4
68	Liquid–liquid synthesis of oximes from carbonyl compounds: formation under neutral conditions and degradation at acidic hydrometallurgical process conditions. Journal of Chemical Technology and Biotechnology, 2017, 92, 1446-1453.	1.6	4
69	Analysis of reactor–separator processes for polymeric and oligomeric degradation products with controlled molar mass distributions. Chemical Engineering Science, 2021, 229, 116154.	1.9	4
70	Cooperative sorption of weak and strong electrolytes in microporous adsorbents. Microporous and Mesoporous Materials, 2017, 239, 86-95.	2.2	3
71	Modeling the liquid–liquid extraction equilibrium of iron (III) with hydroxyoxime extractant and equilibrium-based simulation of counter-current copper extraction circuits. Chemical Engineering Science, 2018, 175, 267-277.	1.9	3
72	Modelling of chromatographic carboxylic acid fractionation with a strong anion exchange resin in sulfate form. Separation and Purification Technology, 2022, 285, 120320.	3.9	3

Tuomo Sainio

#	Article	IF	CITATIONS
73	Performance evaluation of a recycle-integrated process for the production and purification of monosaccharides from lignocellulosic biomass. Separation and Purification Technology, 2015, 156, 561-571.	3.9	2
74	Sorption of Ampholytes in Weakly Acidic Ion Exchangers: Effect of Resin Ionic Form on Betaine Uptake. Solvent Extraction and Ion Exchange, 2012, 30, 388-397.	0.8	0
75	Unified design of chromatographic separation processes: Partial separations and waste fractions. Chemical Engineering Science, 2021, 234, 116457.	1.9	0