
Yitian Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4765975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Friction and Wear Properties of Different Types of Graphene Nanosheets as Effective Solid Lubricants. Langmuir, 2015, 31, 7782-7791.	3.5	144
2	A novel approach to decrease friction of graphene. Carbon, 2017, 118, 233-240.	10.3	113
3	Dynamic Sliding Enhancement on the Friction and Adhesion of Graphene, Graphene Oxide, and Fluorinated Graphene. ACS Applied Materials & Interfaces, 2018, 10, 8214-8224.	8.0	84
4	The hydrogen sensing properties of Pt–Pd/reduced graphene oxide based sensor under different operating conditions. RSC Advances, 2016, 6, 24880-24888.	3.6	56
5	Core–shell tecto dendrimers formed <i>via</i> host–guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery. Nanoscale, 2019, 11, 22343-22350.	5.6	46
6	Anisotropic nanofriction on MoS2 with different thicknesses. Tribology International, 2019, 134, 308-316.	5.9	42
7	Nanotribological characterization of graphene on soft elastic substrate. Carbon, 2017, 124, 541-546.	10.3	38
8	Dependence of the friction strengthening of graphene on velocity. Nanoscale, 2018, 10, 1855-1864.	5.6	31
9	Atomic-Scale Friction Characteristics of Graphene under Conductive AFM with Applied Voltages. ACS Applied Materials & Interfaces, 2020, 12, 25503-25511.	8.0	31
10	Superior lubrication and electrical stability of graphene as highly effective solid lubricant at sliding electrical contact interface. Carbon, 2021, 183, 53-61.	10.3	30
11	Study of nanotribological properties of multilayer graphene by calibrated atomic force microscopy. Nanotechnology, 2014, 25, 305701.	2.6	28
12	Controllable Nanotribological Properties of Graphene Nanosheets. Scientific Reports, 2017, 7, 41891.	3.3	27
13	A Green Design for Lubrication: Multifunctional System Containing Fe ₃ O ₄ @MoS ₂ Nanohybrid. ACS Sustainable Chemistry and Engineering, 2018, 6, 7372-7379.	6.7	27
14	Effect of relative humidity on the frictional properties of graphene at atomic-scale steps. Carbon, 2018, 137, 519-526.	10.3	27
15	Enhancing performances of a resistivity-type hydrogen sensor based on Pd/SnO ₂ /RGO nanocomposites. Nanotechnology, 2017, 28, 215501.	2.6	24
16	Deformation induced atomic-scale frictional characteristics of atomically thin two-dimensional materials. Carbon, 2020, 163, 186-196.	10.3	24
17	An ultra-low frictional interface combining FDTS SAMs with molybdenum disulfide. Nanoscale, 2018, 10, 378-385.	5.6	23
18	Tribological properties of sodium dodecyl sulfate aqueous dispersion of graphite-derived carbon materials. RSC Advances, 2014, 4, 9980.	3.6	19

Yitian Peng

#	Article	IF	CITATIONS
19	Dual control of the nanofriction of graphene. Journal of Materials Chemistry C, 2019, 7, 6041-6051.	5.5	19
20	The Current-Carrying Tribological Properties of Cu/Graphene Composites. Journal of Tribology, 2021, 143, .	1.9	16
21	Ultra-low friction and patterning on atomically thin MoS ₂ <i>via</i> electronic tight-binding. Nanoscale, 2021, 13, 16860-16871.	5.6	15
22	Effect of interlayer bonding strength and bending stiffness on 2-dimensional materials' frictional properties at atomic-scale steps. Applied Surface Science, 2017, 411, 261-270.	6.1	14
23	Enhanced Lubrication and Photocatalytic Degradation of Liquid Paraffin by Hollow MoS ₂ Microspheres. ACS Omega, 2018, 3, 3120-3128.	3.5	14
24	Tribological Properties of Stearic Acid Modified Multi-Walled Carbon Nanotubes in Water. Journal of Tribology, 2013, 135, .	1.9	13
25	Enhanced lubrication and photocatalytic degradation of liquid paraffin by coral-like MoS ₂ . New Journal of Chemistry, 2017, 41, 7674-7680.	2.8	12
26	Fabrication of reduced graphene oxide nanosheets reinforced Sn–Bi nanocomposites by electro-chemical deposition. Composites Part A: Applied Science and Manufacturing, 2015, 73, 55-62.	7.6	11
27	Enhanced tribological properties of composite films based on ionic liquids with MoS2 nanosheets as additives. New Journal of Chemistry, 2018, 42, 4887-4892.	2.8	10
28	Probing the difference in friction performance between graphene and MoS2 by manipulating the silver nanowires. Journal of Materials Science, 2019, 54, 540-551.	3.7	10
29	Nanofriction characteristics of h-BN with electric field induced electrostatic interaction. Friction, 2021, 9, 1492-1503.	6.4	10
30	A Sub-Micron Spherical Atomic Force Microscopic Tip for Surface Measurements. Langmuir, 2020, 36, 7861-7867.	3.5	9
31	Impact of the Surface and Microstructure on the Lubricative Properties of MoS ₂ Aging under Different Environments. Langmuir, 2021, 37, 2928-2941.	3.5	9
32	Material transfer mechanism for fabrication of superlubricity interface by reciprocating rubbing on graphite under high contact stress. Carbon, 2022, 188, 420-430.	10.3	8
33	Investigating the effect of nanoscale triboelectrification on nanofriction in insulators. Nano Energy, 2022, 91, 106620.	16.0	7
34	Electronic friction and tuning on atomically thin MoS2. Npj 2D Materials and Applications, 2022, 6, .	7.9	7
35	Fabrication and characterization of crystalline copper nanowires by electrochemical deposition inside anodic alumina template. Science Bulletin, 2013, 58, 3409-3414.	1.7	6
36	Fabrication, electrical characterization, and detection application of graphene-sheet-based electrical circuits. Nanoscale Research Letters, 2014, 9, 617.	5.7	6

Yitian Peng

#	Article	IF	CITATIONS
37	Tribological Properties of Multi-Walled Carbon Nanotube-Cr and Graphene Oxide-Cr Composite Coating. Journal of Tribology, 2019, 141, .	1.9	4
38	Tuning the nanotribological behaviors of single silver nanowire through various manipulations. Applied Surface Science, 2018, 440, 830-840.	6.1	3
39	Nanotribological behavior of a single silver nanowire on graphite. Nanotechnology, 2018, 29, 085706.	2.6	3
40	The controllable tuning of nanofriction on atomically thin hexagonal boron nitride with external electric field. Applied Surface Science, 2022, 581, 152361.	6.1	3
41	Dynamic electron transfer for reducing nanofriction of graphene at electrified interfaces. Applied Surface Science, 2020, 520, 146327.	6.1	2
42	Electric-Carrying Nanofriction Properties of Atomic-Scale Steps on Graphene. Tribology Letters, 2020, 68, 1.	2.6	2
43	Robust Superlubric Interface across Nano- and Micro-Scales Enabled by Fluoroalkylsilane Self-Assembled Monolayers and Atomically Thin Graphene. ACS Applied Materials & Interfaces, 2021, 13, 56704-56717.	8.0	2
44	Dynamic Nanofriction of Graphene Oxide Induced by a Positively Biased Conductive AFM Tip. Journal of Physical Chemistry C, 2021, 125, 18334-18340.	3.1	1