
Patrice Castignolles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4765893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing the quantification of acetylation in konjac glucomannan via ATR-FTIR and solid-state NMR spectroscopy. Carbohydrate Polymers, 2022, 291, 119659.	5.1	6
2	Advanced spectroscopy, microscopy, diffraction and thermal analysis of polyamide adhesives and prediction of their functional properties with solid-state NMR spectroscopy. Polymer Chemistry, 2021, 12, 1487-1497.	1.9	7
3	Engineering the Distinct Structure Interface of Subnano-alumina Domains on Silica for Acidic Amorphous Silica–Alumina toward Biorefining. Jacs Au, 2021, 1, 262-271.	3.6	7
4	Assessment of starch branching and lamellar structure in rice flours. Food Structure, 2021, 29, 100201.	2.3	3
5	Cellulose consolidation under high-pressure and high-temperature uniaxial compression. Cellulose, 2019, 26, 2941-2954.	2.4	12
6	Degree of branching in poly(acrylic acid) prepared by controlled and conventional radical polymerization. Polymer Chemistry, 2019, 10, 2469-2476.	1.9	10
7	Correlation between Acidity and Catalytic Performance of Mesoporous Zirconium Oxophosphate in Phenylglyoxal Conversion. ACS Sustainable Chemistry and Engineering, 2019, 7, 8931-8942.	3.2	5
8	Characterization of oligo(acrylic acid)s and their block co-oligomers. Analytica Chimica Acta, 2018, 1032, 163-177.	2.6	3
9	Effect of transfer agent, temperature and initial monomer concentration on branching in poly(acrylic acid): A study by 13 C NMR spectroscopy and capillary electrophoresis. Polymer, 2017, 114, 209-220.	1.8	12
10	Syntheses and Structure Investigations of 3d Transition Metal Complexes with a Flexible N4O2-Donor Hexadentate Schiff-Base Ligand. Australian Journal of Chemistry, 2017, 70, 581.	0.5	6
11	Assessment of the Branching Quantification in Poly(acrylic acid): Is It as Easy as It Seems?. Macromolecules, 2017, 50, 9032-9041.	2.2	14
12	Determination of the distributions of degrees of acetylation of chitosan. International Journal of Biological Macromolecules, 2017, 95, 40-48.	3.6	23
13	Quantifying the Heterogeneity of Chemical Structures in Complex Charged Polymers through the Dispersity of Their Distributions of Electrophoretic Mobilities or of Compositions. Analytical Chemistry, 2016, 88, 1674-1681.	3.2	18
14	Structural modifications of cellulose samples after dissolution into various solvent systems. Analytical and Bioanalytical Chemistry, 2016, 408, 8403-8414.	1.9	15
15	Towards a less biased dissolution of chitosan. Analytica Chimica Acta, 2016, 935, 258-268.	2.6	12
16	Capillary Electrophoresis to Monitor Peptide Grafting onto Chitosan Films in Real Time. Journal of Visualized Experiments, 2016, , .	0.2	1
17	Cellular Response to Linear and Branched Poly(acrylic acid). Macromolecular Bioscience, 2015, 15, 1724-1734.	2.1	7
18	Quantification of sugars in breakfast cereals using capillary electrophoresis. Carbohydrate Research, 2015, 408, 134-141.	1.1	22

PATRICE CASTIGNOLLES

#	Article	IF	CITATIONS
19	Real-time monitoring of peptide grafting onto chitosan films using capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2015, 407, 2543-2555.	1.9	7
20	Simple and robust monitoring of ethanol fermentations by capillary electrophoresis. Biotechnology and Applied Biochemistry, 2015, 62, 329-342.	1.4	16
21	Investigation of photochemical reactions of saccharides during direct ultraviolet absorbance detection in capillary electrophoresis. Journal of Chromatography A, 2015, 1388, 259-266.	1.8	15
22	SEC Analysis of Poly(Acrylic Acid) and Poly(Methacrylic Acid). Macromolecular Chemistry and Physics, 2015, 216, 23-37.	1.1	46
23	Ethanol determination using pressure mobilization and free solution capillary electrophoresis by photo-oxidation assisted ultraviolet detection. Journal of Chromatography A, 2014, 1348, 150-157.	1.8	14
24	Understanding and improving direct UV detection of monosaccharides and disaccharides in free solution capillary electrophoresis. Analytica Chimica Acta, 2014, 809, 183-193.	2.6	22
25	Critically evaluated rate coefficients in radical polymerization – 7. Secondary-radical propagation rate coefficients for methyl acrylate in the bulk. Polymer Chemistry, 2014, 5, 204-212.	1.9	118
26	Purity of double hydrophilic block copolymers revealed by capillary electrophoresis in the critical conditions. Journal of Chromatography A, 2014, 1372, 187-195.	1.8	16
27	Separation and Characterization of Synthetic Polyelectrolytes and Polysaccharides with Capillary Electrophoresis. Advances in Chemistry, 2014, 2014, 1-11.	1.1	13
28	Separation of poly(acrylic acid) salts according to topology using capillary electrophoresis in the critical conditions. Analytical and Bioanalytical Chemistry, 2013, 405, 9009-9020.	1.9	17
29	Separation of chitosan by degree of acetylation using simple free solution capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2013, 405, 6873-6877.	1.9	27
30	Heterogeneous modification of chitosan via nitroxide-mediated polymerization. Polymer Chemistry, 2013, 4, 322-328.	1.9	36
31	Supramolecular organization of protonated aminosilicones in water. Journal of Colloid and Interface Science, 2013, 408, 87-93.	5.0	2
32	Simple and robust determination of monosaccharides in plant fibers in complex mixtures by capillary electrophoresis and high performance liquid chromatography. Journal of Chromatography A, 2013, 1291, 179-186.	1.8	49
33	Characterization of Gellan Gum by Capillary Electrophoresis. Australian Journal of Chemistry, 2012, 65, 1156.	0.5	18
34	Synthesis by nitroxide-mediated aqueous dispersion polymerization, characterization, and physical core-crosslinking of pH- and thermoresponsive dynamic diblock copolymer micelles. Polymer Chemistry, 2012, 3, 1526.	1.9	42
35	Polymerization Kinetics: Monitoring Monomer Conversion Using an Internal Standard and the Key Role of Sample t0. Journal of Chemical Education, 2011, 88, 116-121.	1.1	18
36	Size-exclusion chromatography (SEC) of branched polymers and polysaccharides. Analytical and Bioanalytical Chemistry, 2011, 399, 1413-1423.	1.9	223

PATRICE CASTIGNOLLES

#	Article	IF	CITATIONS
37	Viscosimetric detection in sizeâ€exclusion chromatography (SEC/GPC): The Goldwasser method and beyond. Journal of Separation Science, 2010, 33, 3564-3570.	1.3	7
38	Molecular Weight and Tacticity of Oligoacrylates by Capillary Electrophoresis - Mass Spectrometry. Australian Journal of Chemistry, 2010, 63, 1219.	0.5	17
39	Reducing the Degree of Branching in Polyacrylates via Midchain Radical Patching: A Quantitative Melt-State NMR Study. Macromolecules, 2010, 43, 5492-5495.	2.2	40
40	Determination of Propagation Rate Coefficients for Methyl and 2-Ethylhexyl Acrylate via High Frequency PLPâ^'SEC under Consideration of the Impact of Chain Branching. Macromolecules, 2010, 43, 10427-10434.	2.2	49
41	Transfer to Polymer and Longâ€Chain Branching in PLP–SEC of Acrylates. Macromolecular Rapid Communications, 2009, 30, 1995-2001.	2.0	31
42	Assessment of the Extent of Starch Dissolution in Dimethyl Sulfoxide by ¹ H NMR Spectroscopy. Macromolecular Bioscience, 2009, 9, 506-514.	2.1	91
43	Synthesis and characterization of synthetic polymer colloids colloidally stabilized by cationized starch oligomers. Journal of Polymer Science Part A, 2009, 47, 1836-1852.	2.5	25
44	Detection and quantification of branching in polyacrylates by size-exclusion chromatography (SEC) and melt-state 13C NMR spectroscopy. Polymer, 2009, 50, 2373-2383.	1.8	103
45	Controlled/living radical polymerization of isoprene and butadiene in emulsion. European Polymer Journal, 2009, 45, 3149-3163.	2.6	43
46	Peculiar Behavior of Degenerative Chain Transfer Polymerization of a Phosphonated Methacrylate. Macromolecular Chemistry and Physics, 2009, 210, 631-639.	1.1	25
47	Using apparent molecular weight from SEC in controlled/living polymerization and kinetics of polymerization. Journal of Polymer Science Part A, 2008, 46, 897-911.	2.5	63
48	Synthesis of methacrylate derivatives oligomers by dithiobenzoateâ€RAFTâ€mediated polymerization. Journal of Polymer Science Part A, 2008, 46, 2277-2289.	2.5	37
49	Toward a full characterization of native starch: Separation and detection by size-exclusion chromatography. Journal of Chromatography A, 2008, 1205, 60-70.	1.8	43
50	Separation of complex branched polymers by size-exclusion chromatography probed with multiple detection. Journal of Chromatography A, 2008, 1190, 215-223.	1.8	77
51	Water vapour transmission in butadiene–MMA–methacrylic acid latex films. European Polymer Journal, 2008, 44, 342-356.	2.6	1
52	Mechanistic Investigation of a Starch-Branching Enzyme Using Hydrodynamic Volume SEC Analysis. Biomacromolecules, 2008, 9, 954-965.	2.6	67
53	In-Situ Bulk Polymerization of Dilute Particle/MMA Dispersions. Macromolecules, 2007, 40, 4190-4198.	2.2	67
54	Toward a More General Solution to the Band-Broadening Problem in Size Separation of Polymers. Macromolecules, 2007, 40, 3477-3487.	2.2	33

PATRICE CASTIGNOLLES

#	Article	IF	CITATIONS
55	Grafting of Oligosaccharides onto Synthetic Polymer Colloids. Biomacromolecules, 2007, 8, 1816-1823.	2.6	24
56	Theory of Multiple-Detection Size-Exclusion Chromatography of Complex Branched Polymers. Macromolecular Theory and Simulations, 2007, 16, 13-28.	0.6	93
57	A new NMR method for directly monitoring and quantifying the dissolution kinetics of starch in DMSO. Carbohydrate Research, 2007, 342, 2604-2610.	1.1	43
58	Pulsed Laser Polymerization of Alkyl Acrylates: Potential Effects of the Oxygen Presence and High Laser Power. Macromolecular Chemistry and Physics, 2006, 207, 81-89.	1.1	19
59	High-Resolution Separation of Oligo(acrylic acid) by Capillary Zone Electrophoresis. Macromolecular Rapid Communications, 2006, 27, 42-46.	2.0	22
60	PMMA/Zinc Oxide Nanocomposites Prepared by In-Situ Bulk Polymerization. Macromolecular Rapid Communications, 2006, 27, 763-770.	2.0	169
61	New Experimental Procedure To Determine the Recombination Rate Constants between Nitroxides and Macroradicals. Macromolecules, 2005, 38, 4638-4646.	2.2	37
62	Critically Evaluated Rate Coefficients for Free-Radical Polymerization, 5,. Macromolecular Chemistry and Physics, 2004, 205, 2151-2160.	1.1	360
63	Determination of Propagation Rate Coefficient of Acrylates by Pulsed-Laser Polymerization in the Presence of Intramolecular Chain Transfer to Polymer. Macromolecular Rapid Communications, 2003, 24, 778-782.	2.0	73
64	Simulation of Molecular Weight Distributions Obtained by Pulsed Laser Polymerization (PLP): New Analytical Expressions Including Intramolecular Chain Transfer to the Polymer. Macromolecular Theory and Simulations, 2003, 12, 440-448.	0.6	35
65	Pulsed-laser radical polymerization and propagation kinetic parameters of some alkyl acrylates. Macromolecular Symposia, 2001, 174, 197-208.	0.4	74