Yujiang Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4765706/publications.pdf

Version: 2024-02-01

126 4,610 39 60 papers citations h-index g-index

127 127 127 6004 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction. Materials and Design, 2018, 152, 30-39.	7.0	226
2	Disassemblable micelles based on reduction-degradable amphiphilic graft copolymers for intracellular delivery of doxorubicin. Biomaterials, 2010, 31, 7124-7131.	11.4	155
3	Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs. Biomaterials, 2017, 147, 133-144.	11.4	134
4	Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications. Nanomaterials, 2018, 8, 960.	4.1	129
5	Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 337-344.	3.4	117
6	The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture. Colloids and Surfaces B: Biointerfaces, 2016, 140, 392-402.	5.0	117
7	Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering. Biofabrication, 2017, 9, 045008.	7.1	114
8	Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 2267-2279.	3.6	107
9	Novel 3D porous biocomposite scaffolds fabricated by fused deposition modeling and gas foaming combined technology. Composites Part B: Engineering, 2018, 152, 151-159.	12.0	99
10	Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics. Acta Biomaterialia, 2020, 103, 318-332.	8.3	85
11	Regulation and Directing Stem Cell Fate by Tissue Engineering Functional Microenvironments: Scaffold Physical and Chemical Cues. Stem Cells International, 2019, 2019, 1-16.	2.5	84
12	3D printing of calcium phosphate scaffolds with controlled release of antibacterial functions for jaw bone repair. Materials and Design, 2020, 189, 108540.	7.0	79
13	Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs. Acta Biomaterialia, 2017, 51, 447-460.	8.3	76
14	Chondrogenic differentiation of human mesenchymal stem cells on photoreactive polymer-modified surfaces. Biomaterials, 2008, 29, 23-32.	11.4	75
15	Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration. Acta Biomaterialia, 2018, 74, 156-167.	8.3	75
16	Oral health in China: from vision to action. International Journal of Oral Science, 2018, 10, 1.	8.6	74
17	High drug loading pH-sensitive pullulan-DOX conjugate nanoparticles for hepatic targeting. Journal of Biomedical Materials Research - Part A, 2014, 102, 150-159.	4.0	73
18	pH-Responsive charge switchable PEGylated Îμ-poly-l-lysine polymeric nanoparticles-assisted combination therapy for improving breast cancer treatment. Journal of Controlled Release, 2020, 326, 350-364.	9.9	72

#	Article	IF	Citations
19	3D printing of calcium phosphate bioceramic with tailored biodegradation rate for skull bone tissue reconstruction. Bio-Design and Manufacturing, 2019, 2, 161-171.	7.7	70
20	Dual modulation of crystallinity and macro-/microstructures of 3D printed porous titanium implants to enhance stability and osseointegration. Journal of Materials Chemistry B, 2019, 7, 2865-2877.	5.8	69
21	Efficient Delivery of DOX to Nuclei of Hepatic Carcinoma Cells in the Subcutaneous Tumor Model Using pH-Sensitive Pullulan–DOX Conjugates. ACS Applied Materials & Interfaces, 2015, 7, 15855-15865.	8.0	66
22	Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 48, 1-11.	3.1	66
23	Effects of Composition and Mechanical Property of Injectable Collagen I/II Composite Hydrogels on Chondrocyte Behaviors. Tissue Engineering - Part A, 2016, 22, 899-906.	3.1	66
24	Bioreducible PAA-g-PEG graft micelles with high doxorubicin loading for targeted antitumor effect against mouse breast carcinoma. Biomaterials, 2013, 34, 6818-6828.	11.4	64
25	Roles of calcium phosphate-mediated integrin expression and MAPK signaling pathways in the osteoblastic differentiation of mesenchymal stem cells. Journal of Materials Chemistry B, 2016, 4, 2280-2289.	5.8	62
26	Regulation and Directing Stem Cell Fate by Tissue Engineering Functional Microenvironments: Scaffold Physical and Chemical Cues. Stem Cells International, 2019, 2019, 1-16.	2.5	60
27	Tough and elastic hydrogel of hyaluronic acid and chondroitin sulfate as potential cell scaffold materials. International Journal of Biological Macromolecules, 2015, 74, 367-375.	7. 5	59
28	Fabrication and characterization of collagen-based injectable and self-crosslinkable hydrogels for cell encapsulation. Colloids and Surfaces B: Biointerfaces, 2018, 167, 448-456.	5.0	55
29	An instantly fixable and self-adaptive scaffold for skull regeneration by autologous stem cell recruitment and angiogenesis. Nature Communications, 2022, 13, 2499.	12.8	54
30	Selective effect of hydroxyapatite nanoparticles on osteoporotic and healthy bone formation correlates with intracellular calcium homeostasis regulation. Acta Biomaterialia, 2017, 59, 338-350.	8.3	53
31	Comparison of ectopic bone formation process induced by four calcium phosphate ceramics in mice. Materials Science and Engineering C, 2017, 70, 1000-1010.	7.3	51
32	Synergistic chemotherapeutic effect of sorafenib-loaded pullulan-Dox conjugate nanoparticles against murine breast carcinoma. Nanoscale, 2017, 9, 2755-2767.	5.6	49
33	Bio-Functional Design, Application and Trends in Metallic Biomaterials. International Journal of Molecular Sciences, 2018, 19, 24.	4.1	46
34	3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study. Biofabrication, 2021, 13, 015008.	7.1	45
35	Fabrication of porous titanium scaffolds by stack sintering of microporous titanium spheres produced with centrifugal granulation technology. Materials Science and Engineering C, 2014, 43, 182-188.	7.3	44
36	Regulation of the secretion of immunoregulatory factors of mesenchymal stem cells (MSCs) by collagen-based scaffolds during chondrogenesis. Materials Science and Engineering C, 2017, 70, 983-991.	7.3	44

#	Article	IF	Citations
37	Calcium phosphate altered the cytokine secretion of macrophages and influenced the homing of mesenchymal stem cells. Journal of Materials Chemistry B, 2018, 6, 4765-4774.	5.8	44
38	A di-self-crosslinking hyaluronan-based hydrogel combined with type I collagen to construct a biomimetic injectable cartilage-filling scaffold. Acta Biomaterialia, 2020, 111, 197-207.	8.3	44
39	Injectable self-crosslinking HA-SH/Col I blend hydrogels for in vitro construction of engineered cartilage. Carbohydrate Polymers, 2018, 190, 57-66.	10.2	42
40	Reduction breakable cholesteryl pullulan nanoparticles for targeted hepatocellular carcinoma chemotherapy. Journal of Materials Chemistry B, 2014, 2, 3500-3510.	5.8	40
41	Construction of Biomimetic Natural Wood Hierarchical Porous-Structure Bioceramic with Micro/Nanowhisker Coating to Modulate Cellular Behavior and Osteoinductive Activity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48395-48407.	8.0	39
42	Localized multidrug co-delivery by injectable self-crosslinking hydrogel for synergistic combinational chemotherapy. Journal of Materials Chemistry B, 2017, 5, 4852-4862.	5.8	38
43	Bioinspired polysaccharide hybrid hydrogel promoted recruitment and chondrogenic differentiation of bone marrow mesenchymal stem cells. Carbohydrate Polymers, 2021, 267, 118224.	10.2	38
44	Customized additive manufacturing of porous Ti6Al4V scaffold with micro-topological structures to regulate cell behavior in bone tissue engineering. Materials Science and Engineering C, 2021, 120, 111789.	7.3	36
45	Fabrication of customized Ti6Al4V heterogeneous scaffolds with selective laser melting: Optimization of the architecture for orthopedic implant applications. Acta Biomaterialia, 2021, 126, 485-495.	8.3	36
46	Reduction-Degradable Polymeric Micelles Decorated with PArg for Improving Anticancer Drug Delivery Efficacy. ACS Applied Materials & Interfaces, 2016, 8, 2193-2203.	8.0	35
47	Redox and pH dual-responsive injectable hyaluronan hydrogels with shape-recovery and self-healing properties for protein and cell delivery. Carbohydrate Polymers, 2020, 250, 116979.	10.2	35
48	Bioactive composites based on double network approach with tailored mechanical, physico hemical, and biological features. Journal of Biomedical Materials Research - Part A, 2018, 106, 3079-3089.	4.0	32
49	The preparation and biocompatible evaluation of injectable dual crosslinking hyaluronic acid hydrogels as cytoprotective agents. Journal of Materials Chemistry B, 2019, 7, 4413-4423.	5.8	32
50	Construction of surface HA/TiO2 coating on porous titanium scaffolds and its preliminary biological evaluation. Materials Science and Engineering C, 2017, 70, 1047-1056.	7.3	31
51	A Combined Approach of Double Network Hydrogel and Nanocomposites Based on Hyaluronic Acid and Poly(ethylene glycol) Diacrylate Blend. Materials, 2018, 11, 2454.	2.9	31
52	Solubilized Cartilage ECM Facilitates the Recruitment and Chondrogenesis of Endogenous BMSCs in Collagen Scaffolds for Enhancing Microfracture Treatment. ACS Applied Materials & Enterfaces, 2021, 13, 24553-24564.	8.0	31
53	The effects of chemical crosslinking manners on the physical properties and biocompatibility of collagen type I/hyaluronic acid composite hydrogels. International Journal of Biological Macromolecules, 2020, 160, 1201-1211.	7.5	30
54	BMSCs-assisted injectable Col I hydrogel-regenerated cartilage defect by reconstructing superficial and calcified cartilage. International Journal of Energy Production and Management, 2020, 7, 35-45.	3.7	30

#	Article	IF	CITATIONS
55	Injectable strontium-doped hydroxyapatite integrated with phosphoserine-tethered poly(epsilon-lysine) dendrons for osteoporotic bone defect repair. Journal of Materials Chemistry B, 2018, 6, 7974-7984.	5.8	29
56	Hydroxypropylcellulose enhanced high viscosity endoscopic mucosal dissection intraoperative chitosan thermosensitive hydrogel. Carbohydrate Polymers, 2019, 209, 198-206.	10.2	29
57	Dynamic mechanical and swelling properties of maleated hyaluronic acid hydrogels. Carbohydrate Polymers, 2015, 123, 381-389.	10.2	28
58	Development of chitosan/glycerophosphate/collagen thermo-sensitive hydrogel for endoscopic treatment of mucosectomy-induced ulcer. Materials Science and Engineering C, 2019, 103, 109870.	7.3	28
59	Bioinspired supramolecular nanofiber hydrogel through self-assembly of biphenyl-tripeptide for tissue engineering. Bioactive Materials, 2022, 8, 396-408.	15.6	27
60	Extracellular matrix powder from cultured cartilage-like tissue as cell carrier for cartilage repair. Journal of Materials Chemistry B, 2017, 5, 3283-3292.	5.8	26
61	Reductive responsive micelle overcoming multidrug resistance of breast cancer by co-delivery of DOX and specific antibiotic. Journal of Materials Chemistry B, 2019, 7, 6075-6086.	5.8	24
62	Dynamic mechanical loading facilitated chondrogenic differentiation of rabbit BMSCs in collagen scaffolds. International Journal of Energy Production and Management, 2019, 6, 99-106.	3.7	24
63	Lapatinib-loaded acidity-triggered charge switchable polycarbonate-doxorubicin conjugate micelles for synergistic breast cancer chemotherapy. Acta Biomaterialia, 2020, 118, 182-195.	8.3	24
64	In Vivo Evaluation of a pHâ€Sensitive Pullulan–Doxorubicin Conjugate. Advanced Engineering Materials, 2010, 12, B496.	3.5	23
65	Chondrocyte-laden GelMA hydrogel combined with 3D printed PLA scaffolds for auricle regeneration. Materials Science and Engineering C, 2021, 130, 112423.	7.3	23
66	Bioinspired Hydrogel Anchoring 3DP GelMA/HAp Scaffolds Accelerates Bone Reconstruction. ACS Applied Materials & December 2022, 14, 20591-20602.	8.0	23
67	Bone mineral density, microarchitectural and mechanical alterations of osteoporotic rat bone under long-term whole-body vibration therapy. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53, 341-349.	3.1	22
68	Chondrogenic differentiation of BMSCs encapsulated in chondroinductive polysaccharide/collagen hybrid hydrogels. Journal of Materials Chemistry B, 2017, 5, 5109-5119.	5.8	22
69	Injectable and self-crosslinkable hydrogels based on collagen type II and activated chondroitin sulfate for cell delivery. International Journal of Biological Macromolecules, 2018, 118, 2014-2020.	7.5	22
70	Reversing P-Glycoprotein-Associated Multidrug Resistance of Breast Cancer by Targeted Acid-Cleavable Polysaccharide Nanoparticles with Lapatinib Sensitization. ACS Applied Materials & Interfaces, 2020, 12, 51198-51211.	8.0	21
71	Bionic composite hydrogel with a hybrid covalent/noncovalent network promoting phenotypic maintenance of hyaline cartilage. Journal of Materials Chemistry B, 2020, 8, 4402-4411.	5.8	21
72	The effect of collagen hydrogels on chondrocyte behaviors through restricting the contraction of cell/hydrogel constructs. International Journal of Energy Production and Management, 2021, 8, rbab030.	3.7	21

#	Article	IF	CITATIONS
73	Influences of the steam sterilization on the properties of calcium phosphate porous bioceramics. Journal of Materials Science: Materials in Medicine, 2016, 27, 5.	3.6	20
74	Fast fabrication of stable cartilage-like tissue using collagen hydrogel microsphere culture. Journal of Materials Chemistry B, 2017, 5, 9130-9140.	5.8	20
75	Stimuli-responsive biphenyl-tripeptide supramolecular hydrogels as biomimetic extracellular matrix scaffolds for cartilage tissue engineering. Acta Biomaterialia, 2021, 131, 128-137.	8.3	20
76	Temperature and ion dual responsive biphenyl-dipeptide supramolecular hydrogels as extracellular matrix mimic-scaffolds for cell culture applications. Journal of Materials Chemistry B, 2017, 5, 3667-3674.	5.8	19
77	The directional migration and differentiation of mesenchymal stem cells toward vascular endothelial cells stimulated by biphasic calcium phosphate ceramic. International Journal of Energy Production and Management, 2018, 5, 129-139.	3.7	19
78	Effects of the bonding intensity between hyaluronan and gelatin on chondrogenic phenotypic maintenance. Journal of Materials Chemistry B, 2020, 8, 9062-9074.	5.8	19
79	Cell-mediated injectable blend hydrogel-BCP ceramic scaffold for inÂsitu condylar osteochondral repair. Acta Biomaterialia, 2021, 123, 364-378.	8.3	19
80	Lactobionic acid-modified chitosan thermosensitive hydrogels that lift lesions and promote repair in endoscopic submucosal dissection. Carbohydrate Polymers, 2021, 263, 118001.	10.2	19
81	Childhood Cartilage ECM Enhances the Chondrogenesis of Endogenous Cells and Subchondral Bone Repair of the Unidirectional Collagen–dECM Scaffolds in Combination with Microfracture. ACS Applied Materials & Interfaces, 2021, 13, 57043-57057.	8.0	19
82	Effect of different aged cartilage ECM on chondrogenesis of BMSCs <i>in vitro</i> and <i>in vivo</i> International Journal of Energy Production and Management, 2020, 7, 583-595.	3.7	18
83	Activated hyaluronic acid/collagen composite hydrogel with tunable physical properties and improved biological properties. International Journal of Biological Macromolecules, 2020, 164, 2186-2196.	7.5	18
84	A highly interweaved HA-SS-nHAp/collagen hybrid fibering hydrogel enhances osteoinductivity and mineralization. Nanoscale, 2020, 12, 12869-12882.	5.6	18
85	Role of N-Cadherin in a Niche-Mimicking Microenvironment for Chondrogenesis of Mesenchymal Stem Cells <i>In Vitro</i> . ACS Biomaterials Science and Engineering, 2020, 6, 3491-3501.	5.2	18
86	A 3D-printed biphasic calcium phosphate scaffold loaded with platelet lysate/gelatin methacrylate to promote vascularization. Journal of Materials Chemistry B, 2022, 10, 3138-3151.	5.8	18
87	The positive role of macrophage secretion stimulated by BCP ceramic in the ceramic-induced osteogenic differentiation of pre-osteoblasts via Smad-related signaling pathways. RSC Advances, 2016, 6, 102134-102141.	3.6	16
88	Preparation and characterization of biomimetic gradient multi-layer cell-laden scaffolds for osteochondral integrated repair. Journal of Materials Chemistry B, 2022, 10, 4172-4188.	5.8	16
89	Administration duration influences the effects of lowâ€magnitude, highâ€frequency vibration on ovariectomized rat bone. Journal of Orthopaedic Research, 2016, 34, 1147-1157.	2.3	15
90	Direct 3â€D printing of Tiâ€6Alâ€4V/HA composite porous scaffolds for customized mechanical properties and biological functions. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 486-496.	2.7	15

#	Article	IF	Citations
91	Hierarchical responsive micelle facilitates intratumoral penetration by acid-activated positive charge surface and size contraction. Biomaterials, 2021, 271, 120741.	11.4	14
92	Berberine/Ag nanoparticle embedded biomimetic calcium phosphate scaffolds for enhancing antibacterial function. Nanotechnology Reviews, 2020, 9, 568-579.	5.8	13
93	Bionic cartilage acellular matrix microspheres as a scaffold for engineering cartilage. Journal of Materials Chemistry B, 2019, 7, 640-650.	5.8	12
94	Cell-free scaffolds functionalized with bionic cartilage acellular matrix microspheres to enhance the microfracture treatment of articular cartilage defects. Journal of Materials Chemistry B, 2021, 9, 1686-1697.	5.8	12
95	A comparative study of autogenous, allograft and artificial bone substitutes on bone regeneration and immunotoxicity in rat femur defect model. International Journal of Energy Production and Management, 2021, 8, rbaa040.	3.7	12
96	Preparation of BMP-2/PDA-BCP Bioceramic Scaffold by DLP 3D Printing and its Ability for Inducing Continuous Bone Formation. Frontiers in Bioengineering and Biotechnology, 2022, 10, 854693.	4.1	12
97	Chondrocytes behaviors within type I collagen microspheres and bulk hydrogels: an in vitro study. RSC Advances, 2015, 5, 54446-54453.	3.6	11
98	Acid-labile polysaccharide prodrug <i>via</i> lapatinib-sensitizing effect substantially prevented metastasis and postoperative recurrence of triple-negative breast cancer. Nanoscale, 2020, 12, 13567-13581.	5.6	11
99	Biofabrication (3D Bioprinting) Laboratory at Sichuan University. Bio-Design and Manufacturing, 2021, 4, 432-439.	7.7	10
100	Application of femtosecond laser microfabrication in the preparation of advanced bioactive titanium surfaces. Journal of Materials Chemistry B, 2021, 9, 3912-3924.	5.8	10
101	The effect of LyPRP/collagen composite hydrogel on osteogenic differentiation of rBMSCs. International Journal of Energy Production and Management, 2021, 8, rbaa053.	3.7	10
102	Biomineralization from the Perspective of Ion Aggregation: Calcium Phosphate Nucleation in the Physiological Environment. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49519-49534.	8.0	10
103	A multi-level comparative analysis of human femoral cortical bone quality in healthy cadavers and surgical safe margin of osteosarcoma patients. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 111-118.	3.1	9
104	Fabrication of gelatin-micropatterned surface and its effect on osteogenic differentiation of hMSCs. Journal of Materials Chemistry B, 2018, 6, 1018-1025.	5.8	9
105	Study on an injectable biomedical paste using cross-linked sodium hyaluronate as a carrier of hydroxyapatite particles. Carbohydrate Polymers, 2018, 195, 378-386.	10.2	9
106	Repair of osteochondral defects in a rabbit model with artificial cartilage particulates derived from cultured collagen-chondrocyte microspheres. Journal of Materials Chemistry B, 2018, 6, 5164-5173.	5.8	9
107	Synthesis of photo-reactive poly (vinyl alcohol) and construction of scaffold-free cartilage like pellets in vitro. International Journal of Energy Production and Management, 2018, 5, 159-166.	3.7	9
108	Effects of PRP and LyPRP on osteogenic differentiation of MSCs. Journal of Biomedical Materials Research - Part A, 2020, 108, 116-126.	4.0	9

#	Article	IF	CITATIONS
109	Chitosan thermosensitive hydrogels based on lyophilizate powders demonstrate significant potential for clinical use in endoscopic submucosal dissection procedures. International Journal of Biological Macromolecules, 2021, 184, 593-603.	7.5	9
110	Biomaterials-assisted exosomes therapy in osteoarthritis. Biomedical Materials (Bristol), 2022, 17, 022001.	3.3	9
111	Tailorable 3DP Flexible Scaffolds with Porosification of Filaments Facilitate Cell Ingrowth and Biomineralized Deposition. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32914-32926.	8.0	9
112	DOX-encapsulated intelligent PAA-g-PEG/PEG–Fa polymeric micelles for intensifying antitumor therapeutic effect via active-targeted tumor accumulation. Journal of Materials Chemistry B, 2015, 3, 5478-5489.	5.8	8
113	A Col I and BCP ceramic bi-layer scaffold implant promotes regeneration in osteochondral defects. RSC Advances, 2019, 9, 3740-3748.	3.6	8
114	Polyphosphate enhanced biomimetic mineralization of 3D printing scaffolds for bone regeneration. Composites Part B: Engineering, 2022, 239, 109989.	12.0	8
115	Identification of endogenous migratory MSC-like cells and their interaction with the implant materials guiding osteochondral defect repair. Journal of Materials Chemistry B, 2019, 7, 3993-4007.	5.8	7
116	Efficient manufacturing of tissue engineered cartilage <i>in vitro </i> by a multiplexed 3D cultured method. Journal of Materials Chemistry B, 2020, 8, 2082-2095.	5.8	7
117	Reduction-Triggered Breakable Micelles of Amphiphilic Polyamide Amine-g-Polyethylene Glycol for Methotrexate Delivery. BioMed Research International, 2014, 2014, 1-11.	1.9	5
118	Targeted inhibition of HER-2 positive breast cancer cells by trastuzumab functionalized pullulan-doxorubicin nanoparticles. Polymer Testing, 2022, 113, 107669.	4.8	5
119	In vivo immunological properties research on mesenchymal stem cells based engineering cartilage by a dialyzer pocket model. Journal of Materials Science: Materials in Medicine, 2017, 28, 150.	3.6	4
120	<i>In vitro</i> and <i>in vivo</i> assessment of nanostructured porous biphasic calcium phosphate ceramics for promoting osteogenesis in an osteoporotic environment. RSC Advances, 2018, 8, 14646-14653.	3.6	3
121	Evaluating platelet activation related to the degradation of biomaterials using molecular markers. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110516.	5.0	3
122	A core-shell structured collagen hydrogel microsphere with removable superparamagnetic alginate coating for cell coculture and rapid separation. Materials Letters, 2019, 249, 49-52.	2.6	3
123	Feasibility study of use of rabbit blood to evaluate platelet activation by medical devices. Thrombosis Research, 2020, 185, 171-179.	1.7	3
124	A simple, safe and easily accessible polyvinyl alcohol hydrogel for wound cleaning. Journal of Biomaterials Applications, 2022, 36, 1737-1747.	2.4	2
125	Evaluating platelet activation related to the degradation products of biomaterials using molecular markers. Journal of Materials Chemistry B, 2020, 8, 7659-7666.	5.8	1
126	Nanobiomaterials Taking Aim at Drug and Gene Delivery. , 2008, , .		0