Luz Amparo Palacio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4765309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Total oxidation of toluene over calcined trimetallic hydrotalcites type catalysts. Journal of Hazardous Materials, 2010, 177, 407-413.	12.4	63
2	Synthesis and characterization of terephthalate-intercalated NiAl layered double hydroxides with high Al content. Dalton Transactions, 2013, 42, 2084-2093.	3.3	47
3	Performance of supported catalysts based on a new copper vanadate-type precursor for catalytic oxidation of toluene. Journal of Hazardous Materials, 2008, 153, 628-634.	12.4	39
4	Copper-nickel catalysts from hydrotalcite precursors: The performance in NO reduction by CO. Applied Catalysis B: Environmental, 2018, 237, 327-338.	20.2	39
5	Catalytic oxidation of volatile organic compounds with a new precursor type copper vanadate. Catalysis Today, 2008, 133-135, 502-508.	4.4	24
6	Effect of composition and thermal treatment in catalysts derived from Cu-Al hydrotalcites-like compounds in the NO reduction by CO. Catalysis Today, 2017, 289, 133-142.	4.4	24
7	Unsupported trimetallic Ni(Co)-Mo-W sulphide catalysts prepared from mixed oxides: Characterisation and catalytic tests for simultaneous tetralin HDA and dibenzothiophene HDS reactions. Catalysis Today, 2017, 292, 84-96.	4.4	21
8	Niobia-alumina as methanol dehydration component in mixed catalyst systems for dimethyl ether production from syngas. Applied Catalysis A: General, 2014, 488, 19-27.	4.3	20
9	V–Mg–Al catalyst from hydrotalcite for the oxidative dehydrogenation of propane. Reaction Kinetics, Mechanisms and Catalysis, 2014, 111, 679-696.	1.7	19
10	Heptamolybdate-intercalated CoMgAl hydrotalcites as precursors for HDS-selective hydrotreating catalysts. Catalysis Today, 2015, 250, 38-46.	4.4	19
11	Copper–aluminum hydrotalcite type precursors for NOx abatement. Catalysis Today, 2015, 250, 173-179.	4.4	19
12	[Zn3+xV2â^'xO7â^'3x(OH)2+3x]â‹2H2O and M[Zn3â^'xV2O7(OH)2]Cl1â^'2xâ‹()H2O two families of zinc var with structures related to the hexagonal structure of [Zn3V2O7(OH)2]â‹2H2O. Solid State Sciences, 2004, 6, 1251-1258.	nadates 3.2	18
13	Decavanadate-intercalated Ni–Al hydrotalcites as precursors of mixed oxides for the oxidative dehydrogenation of propane. Catalysis Today, 2012, 192, 36-43.	4.4	17
14	Mixed NiMo, NiW and NiMoW sulfides obtained from layered double hydroxides as catalysts in simultaneous HDA and HDS reactions. Catalysis Today, 2017, 296, 187-196.	4.4	17
15	Crystal structure a cobalt molybdate type φx: NaCo2OH(H2O)(MoO4)2. Solid State Sciences, 2001, 3, 367-371.	0.7	16
16	Cu, Mn and Co molybdates derived from novel precursors catalyze the oxidative dehydrogenation of propane. Catalysis Today, 2005, 107-108, 338-345.	4.4	16
17	Hydrothermal synthesis of new wolframite type trimetallic materials and their use in oxidative dehydrogenation of propane. Physical Chemistry Chemical Physics, 2009, 11, 9583.	2.8	16
18	Simultaneous tetralin HDA and dibenzothiophene HDS reactions on NiMo bulk sulphide catalysts obtained from mixed oxides. Catalysis Science and Technology, 2014, 4, 1227-1238.	4.1	16

LUZ AMPARO PALACIO

#	Article	IF	CITATIONS
19	Influence of the Mg2+ or Mn2+ contents on the structure of NiMnAl and CoMgAl hydrotalcite materials with high aluminum contents. Catalysis Today, 2015, 250, 87-94.	4.4	15
20	Synthesis, characterization and structural data of an ammonium manganomolybdate type. Solid State Sciences, 2005, 7, 1043-1048.	3.2	14
21	Unsupported NiMoAl hydrotreating catalysts prepared from NiAl-terephthalate hydrotalcites exchanged with heptamolybdate. Catalysis Today, 2013, 213, 198-205.	4.4	14
22	The effect of preparation methods on the thermal and chemical reducibility of Cu in Cu–Al oxides. Dalton Transactions, 2018, 47, 10989-11001.	3.3	13
23	Synthesis of NiAl layered double hydroxides intercalated with aliphatic dibasic anions and their exchange with heptamolybdate. Applied Clay Science, 2019, 176, 29-37.	5.2	12
24	Synthesis and characterization of (NH ₄) _{1.5} Cu ₂ Cr ₂ O ₈ (OH) _{1.5} â <h Powder Diffraction, 2009, 24, 244-246.</h 	<soubb>2<td>subøO.</td></soubb>	subøO.
25	Copper-manganese catalysts with high activity for methanol synthesis. Applied Catalysis A: General, 2019, 579, 65-74.	4.3	8
26	A zinc chromate of type \hat{I}_1^l Y: synthesis and structure. Microporous and Mesoporous Materials, 2001, 47, 303-309.	4.4	7
27	Propane Oxidative Dehydrogenation on ZnCoMo and NiCoMo Catalysts Obtained from ï• _{<i>y</i>} and i• _{<i>x</i>} Precursors. Industrial & Engineering Chemistry Research, 2013, 52, 5582-5586.	3.7	7
28	X-ray powder diffraction data for zinc molybdate, Na(OH)Zn2(MoO4)2·2.5H2O. Powder Diffraction, 2000, 15, 191-192.	0.2	5
29	Synthesis of Industrial Waste Based Metal Catalysts for Oxidative Dehydrogenation of Propane. Industrial & Engineering Chemistry Research, 2013, 52, 7341-7349.	3.7	4
30	Structural data of a cobalt molybdate type $\hat{I} x$. Powder Diffraction, 2003, 18, 227-229.	0.2	2
31	Structural characterization of a porous zinc vanadate: Zn3(VO4)2â‹3H2O. Powder Diffraction, 2002, 17, 320-321.	0.2	1
32	Synthesis and crystallographic data of a new copper phosphate CuPO4Hâ‹0.5H2O. Powder Diffraction, 2003, 18, 36-37.	0.2	1
33	Catalytic performance and stability of isomorphic molybdates used for the oxidative dehydrogenation of propane. Reaction Kinetics and Catalysis Letters, 2005, 85, 175-182.	0.6	1
34	Powder diffraction data of Mn ₂ MoO ₅ .0.6H ₂ O. Powder Diffraction, 2009, 24, 48-49.	0.2	1
35	Structural characterization of a new zinc phosphate: (ZnPO4)4(H3PO4)2(C4N2H14)2. Powder Diffraction, 2001, 16, 160-162.	0.2	0
36	Synthesis, Characterization and Structural Data of an Ammonium Manganomolybdate Type ΦX ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
37	The influence of Ba addition on thermal stability and catalytic activity of Cu-based mixed oxide. Catalysis Today, 2020, 381, 234-234.	4.4	0