Cornelia C Unger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4765298/publications.pdf

Version: 2024-02-01

1163117 1281871 10 168 8 11 citations h-index g-index papers 11 11 11 185 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly functional energetic complexes: stability tuning through coordination diversity of isomeric propyl-linked ditetrazoles. Journal of Materials Chemistry A, 2018, 6, 6565-6577.	10.3	52
2	Synthetic Routes to a Triazole and Tetrazole with Trinitroalkyl Substitution at Nitrogen. Journal of Organic Chemistry, 2018, 83, 10505-10509.	3.2	18
3	Convenient synthesis of energetic polynitro materials including (NO2)3CCH2CH2NH3-saltsviaMichael addition of trinitromethane. Dalton Transactions, 2016, 45, 18909-18920.	3.3	17
4	Midway between Energetic Molecular Crystals and High-Density Energetic Salts: Crystal Engineering with Hydrogen Bonded Chains of Polynitro Bipyrazoles. Crystal Growth and Design, 2020, 20, 755-764.	3.0	17
5	Energetic Metal and Nitrogen-Rich Salts of the Pentaerythritol Tetranitrate Analogue Pentaerythritol Tetranitrocarbamate. Inorganic Chemistry, 2019, 58, 2881-2887.	4.0	14
6	Toxicity Assessment of Energetic Materials by Using the Luminescent Bacteria Inhibition Test. Propellants, Explosives, Pyrotechnics, 2021, 46, 114-123.	1.6	13
7	Urazine – a Long Established Heterocycle and Energetic Chameleon. European Journal of Organic Chemistry, 2020, 2020, 4916-4924.	2.4	11
8	Oxygen-Rich Bis(trinitroethyl esters): Suitable Oxidizers as Potential Ammonium Perchlorate Replacements. Energy & Energ	5.1	8
9	Unusual Energetic Periodate, Sulfate and Aminoâ€bistetrazolate Salts of the Trinitropropylammonium Cation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 2-4.	1.2	5
10	Synthesis, structural and toxicological investigations of quarternary phosphonium salts containing the P-bonded bioisosteric CH2F moiety. New Journal of Chemistry, 2020, 44, 14306-14315.	2.8	4