List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4765272/publications.pdf Version: 2024-02-01

		24978	28224
169	12,110	57	105
papers	citations	h-index	g-index
174	174	174	16231
all docs	docs citations	times ranked	citing authors

ΔΝΙ-λλη Χη

#	Article	IF	CITATIONS
1	The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles. Journal of Catalysis, 2002, 207, 151-157.	3.1	1,062
2	Noble-Metal-Free Fe–N/C Catalyst for Highly Efficient Oxygen Reduction Reaction under Both Alkaline and Acidic Conditions. Journal of the American Chemical Society, 2014, 136, 11027-11033.	6.6	941
3	Highly Durable N-Doped Graphene/CdS Nanocomposites with Enhanced Photocatalytic Hydrogen Evolution from Water under Visible Light Irradiation. Journal of Physical Chemistry C, 2011, 115, 11466-11473.	1.5	544
4	Shape Effects of Cu ₂ O Polyhedral Microcrystals on Photocatalytic Activity. Journal of Physical Chemistry C, 2010, 114, 5073-5079.	1.5	359
5	Large Ultrathin Anatase TiO ₂ Nanosheets with Exposed {001} Facets on Graphene for Enhanced Visible Light Photocatalytic Activity. Journal of Physical Chemistry C, 2012, 116, 19893-19901.	1.5	330
6	Stable blue TiO2â^'x nanoparticles for efficient visible light photocatalysts. Journal of Materials Chemistry A, 2014, 2, 4429.	5.2	295
7	A Simple Method to Synthesize Dy(OH)3 and Dy2O3 Nanotubes. Journal of the American Chemical Society, 2003, 125, 1494-1495.	6.6	256
8	Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal. Journal of Materials Chemistry, 2011, 21, 17353.	6.7	240
9	Novel one-dimensional Bi ₂ O ₃ –Bi ₂ WO ₆ p–n hierarchical heterojunction with enhanced photocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 8517-8524.	5.2	240
10	Constructing Highly Uniform Onion-Ring-like Graphitic Carbon Nitride for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. ACS Nano, 2018, 12, 5551-5558.	7.3	231
11	Cobalt phosphate nanoparticles decorated with nitrogen-doped carbon layers as highly active and stable electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 8155-8160.	5.2	222
12	Facile Synthesis of the Novel Ag ₃ VO ₄ /AgBr/Ag Plasmonic Photocatalyst with Enhanced Photocatalytic Activity and Stability. Journal of Physical Chemistry C, 2013, 117, 5894-5900.	1.5	198
13	Oxygen deficient ZnO _{1â^'x} nanosheets with high visible light photocatalytic activity. Nanoscale, 2015, 7, 7216-7223.	2.8	190
14	Oneâ€Step In Situ Growth of Iron–Nickel Sulfide Nanosheets on FeNi Alloy Foils: Highâ€Performance and Selfâ€Supported Electrodes for Water Oxidation. Small, 2017, 13, 1604161.	5.2	177
15	Highly Branched Concave Au/Pd Bimetallic Nanocrystals with Superior Electrocatalytic Activity and Highly Efficient SERS Enhancement. Angewandte Chemie - International Edition, 2013, 52, 645-649.	7.2	152
16	Nitrogen dopants in nickel nanoparticles embedded carbon nanotubes promote overall urea oxidation. Applied Catalysis B: Environmental, 2021, 280, 119436.	10.8	151
17	Polymorph Switching of Calcium Carbonate Crystals by Polymer ontrolled Crystallization. Advanced Functional Materials, 2008, 18, 1307-1313.	7.8	140
18	g-C ₃ N ₄ Hydrogen-Bonding Viologen for Significantly Enhanced Visible-Light Photocatalytic H ₂ Evolution. ACS Catalysis, 2017, 7, 8228-8234.	5.5	131

#	Article	IF	CITATIONS
19	Direct growth of cobalt-rich cobalt phosphide catalysts on cobalt foil: an efficient and self-supported bifunctional electrode for overall water splitting in alkaline media. Journal of Materials Chemistry A, 2017, 5, 10561-10566.	5.2	130
20	Nonprecious Bimetallic (Fe,Mo)–N/C Catalyst for Efficient Oxygen Reduction Reaction. ACS Catalysis, 2016, 6, 4449-4454.	5.5	127
21	Room-temperature synthesis of Zn0.80Cd0.20S solid solution with a high visible-light photocatalytic activity for hydrogen evolution. Nanoscale, 2012, 4, 2046.	2.8	125
22	Carbothermal activation synthesis of 3D porous g-C3N4/carbon nanosheets composite with superior performance for CO2 photoreduction. Applied Catalysis B: Environmental, 2018, 239, 196-203.	10.8	125
23	Bimetallic phosphide hollow nanocubes derived from a prussian-blue-analog used as high-performance catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2017, 7, 1549-1555.	2.1	118
24	One-Step Growth of Iron–Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 28627-28634.	4.0	116
25	Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production. Chinese Journal of Catalysis, 2017, 38, 1295-1306.	6.9	114
26	Polymerâ€Mediated Mineralization and Self‣imilar Mesoscaleâ€Organized Calcium Carbonate with Unusual Superstructures. Advanced Materials, 2008, 20, 1333-1338.	11.1	111
27	Terbium-based infinite coordination polymer hollow microspheres: preparation and white-light emission. Journal of Materials Chemistry, 2011, 21, 16574.	6.7	111
28	A Highâ€Performance, Lowâ€Tortuosity Woodâ€Carbon Monolith Reactor. Advanced Materials, 2017, 29, 1604257.	11.1	110
29	Synproportionation Reaction for the Fabrication of Sn ²⁺ Self-Doped SnO _{2-x} Nanocrystals with Tunable Band Structure and Highly Efficient Visible Light Photocatalytic Activity. Journal of Physical Chemistry C, 2013, 117, 24157-24166.	1.5	104
30	Facile Fabrication of Bi ₁₂ O ₁₇ Br ₂ /Bi ₂₄ O ₃₁ Br ₁₀ Type II Heterostructures with High Visible Photocatalytic Activity. Journal of Physical Chemistry C, 2015, 119, 13032-13040.	1.5	100
31	Synthesis of one-dimensional WO ₃ –Bi ₂ WO ₆ heterojunctions with enhanced photocatalytic activity. CrystEngComm, 2015, 17, 569-576.	1.3	99
32	Efficient adsorption/photodegradation of organic pollutants from aqueous systems using Cu ₂ 0 nanocrystals as a novel integrated photocatalytic adsorbent. Journal of Materials Chemistry A, 2014, 2, 14563.	5.2	96
33	1,3-Diamino-2-hydroxypropane-N,N,N′,N′-tetraacetic acid stabilized amorphous calcium carbonate: nucleation, transformation and crystal growth. CrystEngComm, 2010, 12, 234-241.	1.3	95
34	2D Nanoporous Feâ^'N/C Nanosheets as Highly Efficient Non-Platinum Electrocatalysts for Oxygen Reduction Reaction in Zn-Air Battery. Small, 2016, 12, 5710-5719.	5.2	95
35	Metallic MoO ₂ cocatalyst significantly enhances visible-light photocatalytic hydrogen production over MoO ₂ /Zn _{0.5} Cd _{0.5} S heterojunction. Nanoscale, 2015, 7, 5752-5759.	2.8	94
36	Bare Cd _{1–<i>x</i>} Zn _{<i>x</i>} S ZB/WZ Heterophase Nanojunctions for Visible Light Photocatalytic Hydrogen Production with High Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 24550-24558.	4.0	93

#	Article	IF	CITATIONS
37	Ultrasmall Ni nanoparticles embedded in Zr-based MOFs provide high selectivity for CO ₂ hydrogenation to methane at low temperatures. Catalysis Science and Technology, 2018, 8, 3160-3165.	2.1	87
38	Novel CeO2 yolk–shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol. Nanoscale, 2012, 4, 6835.	2.8	86
39	Supramolecular architectures from the self-assembly of trans-oxamidato-bridged dicopper(II) building blocks and phenyldicarboxylates. Dalton Transactions RSC, 2001, , 2559-2566.	2.3	85
40	The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 8055-8061.	5.2	85
41	Carbon-Coated Fe ₃ O ₄ /VO _{<i>x</i>} Hollow Microboxes Derived from Metal–Organic Frameworks as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 3757-3765.	4.0	82
42	Hydrophobic Teflon films as concentrators for single-molecule SERS detection. Journal of Materials Chemistry, 2012, 22, 20986.	6.7	75
43	A Novel Magnetically Recoverable Ni-CeO _{2–<i>x</i>} /Pd Nanocatalyst with Superior Catalytic Performance for Hydrogenation of Styrene and 4-Nitrophenol. ACS Applied Materials & Interfaces, 2017, 9, 9756-9762.	4.0	75
44	Synthesis of zinc oxide nanoparticles with strong, tunable and stable visible light emission by solid-state transformation of Zn(ii)–organic coordination polymers. Journal of Materials Chemistry, 2011, 21, 12309.	6.7	74
45	Highly dispersed ultra-small Pd nanoparticles on gadolinium hydroxide nanorods for efficient hydrogenation reactions. Nanoscale, 2017, 9, 13800-13807.	2.8	72
46	Confined Pyrolysis within a Nanochannel to Form a Highly Efficient Single Iron Site Catalyst for Zn–Air Batteries. ACS Energy Letters, 2018, 3, 2383-2389.	8.8	70
47	Plasmon enhanced visible light photocatalytic activity of ternary Ag ₂ Mo ₂ O ₇ @AgBr–Ag rod-like heterostructures. Journal of Materials Chemistry A, 2015, 3, 14661-14668.	5.2	68
48	The doping of phosphorus atoms into graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 11506-11512.	5.2	68
49	Fabrication of porous Cd-doped ZnO nanorods with enhanced photocatalytic activity and stability. CrystEngComm, 2013, 15, 6518.	1.3	67
50	BaTiO ₃ –graphene nanocomposites: synthesis and visible light photocatalytic activity. New Journal of Chemistry, 2015, 39, 4407-4413.	1.4	67
51	Artificial Photosynthetic Z-scheme Photocatalyst for Hydrogen Evolution with High Quantum Efficiency. Journal of Physical Chemistry C, 2017, 121, 107-114.	1.5	67
52	Calcite Crystals with Platonic Shapes and Minimal Surfaces. Angewandte Chemie - International Edition, 2009, 48, 395-399.	7.2	66
53	Nanocasting synthesis of chromium doped mesoporous CeO2 with enhanced visible-light photocatalytic CO2 reduction performance. Journal of Hazardous Materials, 2019, 372, 69-76.	6.5	65
54	Single Phase PtAg Bimetallic Alloy Nanoparticles Highly Dispersed on Reduced Graphene Oxide for Electrocatalytic Application of Methanol Oxidation Reaction. Electrochimica Acta, 2016, 197, 117-125.	2.6	64

#	Article	IF	CITATIONS
55	Highly Efficient Fenton and Enzyme-Mimetic Activities of Mixed-Phase VO _{<i>x</i>} Nanoflakes. ACS Applied Materials & Interfaces, 2016, 8, 30126-30132.	4.0	61
56	Self-assembly of silver(I) polymers with single strand double-helical structures containing the ligand O,O′-bis(8-quinolyl)-1,8-dioxaoctane. Dalton Transactions RSC, 2001, , 2429-2434.	2.3	60
57	P doped molybdenum dioxide on Mo foil with high electrocatalytic activity for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 1647-1652.	5.2	60
58	Metallic 1T-Li _{<i>x</i>} MoS ₂ Cocatalyst Significantly Enhanced the Photocatalytic H ₂ Evolution over Cd _{0.5} Zn _{0.5} S Nanocrystals under Visible Light Irradiation. ACS Applied Materials & Interfaces, 2016, 8, 4023-4030.	4.0	59
59	Molecule-Assisted Synthesis of Highly Dispersed Ultrasmall RuO ₂ Nanoparticles on Nitrogen-Doped Carbon Matrix as Ultraefficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 11529-11535.	3.2	58
60	Large improvement of visible-light photocatalytic H ₂ -evolution based on cocatalyst-free Zn _{0.5} Cd _{0.5} S synthesized through a two-step process. Catalysis Science and Technology, 2017, 7, 961-967.	2.1	57
61	Hierarchically porous carbon derived from potassium-citrate-loaded poplar catkin for high performance supercapacitors. Journal of Colloid and Interface Science, 2021, 582, 940-949.	5.0	57
62	Facile large-scale synthesis of macroscopic 3D porous graphene-like carbon nanosheets architecture for efficient CO2 adsorption. Carbon, 2019, 145, 751-756.	5.4	55
63	Pd/TiO Nanocatalyst with Strong Metal–Support Interaction for Highly Efficient Durable Heterogeneous Hydrogenation. Journal of Physical Chemistry C, 2017, 121, 1162-1170.	1.5	54
64	Synthesis of nanoporous structured iron carbide/Fe–N–carbon composites for efficient oxygen reduction reaction in Zn–air batteries. Journal of Materials Chemistry A, 2016, 4, 19037-19044.	5.2	53
65	A Hybrid VO _{<i>x</i>} Incorporated Hexacyanoferrate Nanostructured Hydrogel as a Multienzyme Mimetic <i>via</i> Cascade Reactions. ACS Nano, 2020, 14, 3017-3031.	7.3	53
66	Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive 90Sr2+ and 137Cs+ ions and oils. Scientific Reports, 2016, 6, 20920.	1.6	52
67	Plasmonic MoO _{3â~x} nanoparticles incorporated in Prussian blue frameworks exhibit highly efficient dual photothermal/photodynamic therapy. Journal of Materials Chemistry B, 2019, 7, 2032-2042.	2.9	51
68	Tuning the activity of N-doped carbon for CO ₂ reduction <i>via in situ</i> encapsulation of nickel nanoparticles into nano-hybrid carbon substrates. Journal of Materials Chemistry A, 2019, 7, 6894-6900.	5.2	51
69	Byssal threads inspired ionic cross-linked narce-like graphene oxide paper with superior mechanical strength. RSC Advances, 2014, 4, 40390-40395.	1.7	50
70	Powerful CO ₂ electroreduction performance with N–carbon doped with single Ni atoms. Catalysis Science and Technology, 2019, 9, 3669-3674.	2.1	49
71	Bioproduced Polymers Self-Assemble with Graphene Oxide into Nanocomposite Films with Enhanced Mechanical Performance. ACS Nano, 2020, 14, 14731-14739.	7.3	49
72	Adsorption-enhanced nitrogen-doped mesoporous CeO2 as an efficient visible-light-driven catalyst for CO2 photoreduction. Journal of CO2 Utilization, 2020, 39, 101176.	3.3	47

#	Article	IF	CITATIONS
73	Facile synthesis of silica nanosheets with hierarchical pore structure and their amine-functionalized composite for enhanced CO2 capture. Chemical Engineering Science, 2020, 217, 115528.	1.9	47
74	Core–Shell Carbonâ€Coated CuO Nanocomposites: A Highly Stable Electrode Material for Supercapacitors and Lithiumâ€lon Batteries. Chemistry - an Asian Journal, 2015, 10, 595-601.	1.7	46
75	Oxygen vacancy-rich nitrogen-doped Co3O4 nanosheets as an efficient water-resistant catalyst for low temperature CO oxidation. Journal of Colloid and Interface Science, 2019, 553, 427-435.	5.0	46
76	Calcium carbonate/CaIP6 nanocomposite particles as gene delivery vehicles for human vascular smooth muscle cells. Journal of Materials Chemistry, 2010, 20, 8050.	6.7	44
77	Highly efficient removal of humic acid from aqueous solutions by Mg/Al layered double hydroxides–Fe3O4 nanocomposites. RSC Advances, 2014, 4, 21802.	1.7	43
78	Controlled synthesis of thin BiOCl nanosheets with exposed {001} facets and enhanced photocatalytic activities. CrystEngComm, 2015, 17, 3845-3851.	1.3	40
79	Intrinsic peroxidase-like activity and enhanced photo-Fenton reactivity of iron-substituted polyoxometallate nanostructures. Dalton Transactions, 2018, 47, 7344-7352.	1.6	39
80	Oxygen-Deficient TiO _{2â€`â€`á€`<i>x</i>} /Methylene Blue Colloids: Highly Efficient Photoreversible Intelligent Ink. Langmuir, 2016, 32, 8980-8987.	1.6	38
81	Synergistic effect of graphene and multi-walled carbon nanotubes composite supported Pd nanocubes on enhancing catalytic activity for electro-oxidation of formic acid. Catalysis Science and Technology, 2016, 6, 4794-4801.	2.1	38
82	A rationally designed Fe-tetrapyridophenazine complex: a promising precursor to a single-atom Fe catalyst for an efficient oxygen reduction reaction in high-power Zn–air cells. Nanoscale, 2018, 10, 16145-16152.	2.8	37
83	Rational design of a bifunctional fluorescent probe for distinguishing Hcy/Cys from GSH with ideal properties. Chinese Chemical Letters, 2021, 32, 1061-1065.	4.8	37
84	An efficient multidoped Cu0.39Zn0.14Co2.47O4-ZnO electrode attached on reduced graphene oxide and copper foam as superior lithium-ion battery anodes. Chemical Engineering Journal, 2018, 336, 510-517.	6.6	36
85	Oxygen deficient Pr ₆ O ₁₁ nanorod supported palladium nanoparticles: highly active nanocatalysts for styrene and 4-nitrophenol hydrogenation reactions. RSC Advances, 2018, 8, 17504-17510.	1.7	36
86	Heterostructured Calcium Carbonate Microspheres with Calcite Equatorial Loops and Vaterite Spherical Cores. Angewandte Chemie - International Edition, 2013, 52, 6317-6321.	7.2	34
87	Engineering of anatase/rutile TiO2 heterophase junction via in-situ phase transformation for enhanced photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 599, 795-804.	5.0	34
88	Synthesis of BiOI/Bi ₄ O ₅ I ₂ /Bi ₂ O ₂ CO ₃ p–n– heterojunctions with superior photocatalytic activities. New Journal of Chemistry, 2015, 39, 8321-8328.	p 1.4	33
89	A yellow-emissive carbon nanodot-based ratiometric fluorescent nanosensor for visualization of exogenous and endogenous hydroxyl radicals in the mitochondria of live cells. Journal of Materials Chemistry B, 2019, 7, 3737-3744.	2.9	33
90	Construction of hierarchically porous 3D graphene-like carbon material by B, N co-doping for enhanced CO2 capture. Microporous and Mesoporous Materials, 2021, 322, 111158.	2.2	33

#	Article	IF	CITATIONS
91	Carbon nanotube/S–N–C nanohybrids as high performance bifunctional electrocatalysts for both oxygen reduction and evolution reactions. New Journal of Chemistry, 2015, 39, 6289-6296.	1.4	32
92	Hydrogenation/oxidation induced efficient reversible color switching between methylene blue and leuco-methylene blue. RSC Advances, 2017, 7, 30080-30085.	1.7	32
93	Synthesis and characterization of single-crystal Sb2S3 nanotubes via an EDTA-assisted hydrothermal route. Materials Chemistry and Physics, 2010, 123, 236-240.	2.0	31
94	Amorphous Calcium Carbonate Stabilized by a Flexible Biomimetic Polymer Inspired by Marine Mussels. Crystal Growth and Design, 2013, 13, 1937-1942.	1.4	31
95	Easy Synthesis of Ordered Mesoporous Carbon–Carbon Nanotube Nanocomposite as a Promising Support for CO ₂ Photoreduction. ACS Sustainable Chemistry and Engineering, 2018, 6, 2529-2534.	3.2	31
96	Controllable synthesis of nitrogen-doped carbon containing Co and Co3Fe7 nanoparticles as effective catalysts for electrochemical oxygen conversion. Journal of Colloid and Interface Science, 2021, 590, 622-631.	5.0	31
97	Constructing highly porous carbon materials from porous organic polymers for superior CO2 adsorption and separation. Journal of Colloid and Interface Science, 2022, 609, 775-784.	5.0	31
98	Ultralow Pt Loaded Molybdenum Dioxide/Carbon Nanotubes for Highly Efficient and Durable Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2017, 121, 24979-24986.	1.5	30
99	Facile synthesis of 3D flower-like mesoporous Ce-ZnO at room temperature for the sunlight-driven photocatalytic degradations of RhB and phenol. Journal of Colloid and Interface Science, 2019, 556, 726-733.	5.0	30
100	Template-free facile solution synthesis and optical properties of ZnO mesocrystals. CrystEngComm, 2013, 15, 376-381.	1.3	29
101	Dramatic Enhancement of CO ₂ Photoreduction by Biodegradable Lightâ€Management Paper. Advanced Energy Materials, 2018, 8, 1703136.	10.2	29
102	Hydrogen-bonding-assisted charge transfer: significantly enhanced photocatalytic H ₂ evolution over g-C ₃ N ₄ anchored with ferrocene-based hole relay. Catalysis Science and Technology, 2018, 8, 2853-2859.	2.1	28
103	Metal–acid nanoplate-supported ultrafine Ru nanoclusters for efficient catalytic fractionation of lignin into aromatic alcohols. Green Chemistry, 2019, 21, 2739-2751.	4.6	28
104	Polydopamine Coated PB-MnO ₂ Nanoparticles as an Oxygen Generator Nanosystem for Imaging-Guided Single-NIR-Laser Triggered Synergistic Photodynamic/Photothermal Therapy. Bioconjugate Chemistry, 2020, 31, 1474-1485.	1.8	27
105	Highly dispersed platinum nanoparticles generated in viologen micelles with high catalytic activity and stability. Journal of Materials Chemistry A, 2013, 1, 12206.	5.2	25
106	Supramolecular polymers-derived nonmetal N, S-codoped carbon nanosheets for efficient oxygen reduction reaction. RSC Advances, 2016, 6, 52937-52944.	1.7	25
107	In situ redox deposition of palladium nanoparticles on oxygen-deficient tungsten oxide as efficient hydrogenation catalysts. RSC Advances, 2017, 7, 2351-2357.	1.7	25
108	Graphitic carbon nitride/CoTPP type-II heterostructures with significantly enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2019, 9, 2196-2202.	2.1	25

#	Article	IF	CITATIONS
109	Monodisperse Pd Nanotetrahedrons on Ultrathin MoO _{3–<i>x</i>} Nanosheets as Excellent Heterogeneous Catalyst for Chemoselective Hydrogenation Reactions. Journal of Physical Chemistry C, 2017, 121, 27528-27534.	1.5	25
110	Neutral Templating Route to Unusual Mesostructured Silicas. Journal of Physical Chemistry B, 2002, 106, 13161-13164.	1.2	24
111	Gelatin-mediated hydrothermal synthesis of apple-like LaCO3OH hierarchical nanostructures and tunable white-light emission. CrystEngComm, 2011, 13, 4151.	1.3	24
112	Facile synthesis and characterization of ZnO octahedral superstructures from solid-state transformation of Zn(ii)–organic coordination polymers. CrystEngComm, 2012, 14, 6875.	1.3	24
113	Boosting visible-light photocatalytic H ₂ evolution <i>via</i> UiO-66-NH ₂ octahedrons decorated with ultrasmall NiO nanoparticles. Dalton Transactions, 2018, 47, 11705-11712.	1.6	22
114	Dramatic enhancement of photocatalytic H2 evolution over hydrolyzed MOF-5 coupled Zn0.2Cd0.8S heterojunction. Journal of Colloid and Interface Science, 2020, 577, 233-241.	5.0	22
115	Hierarchically Ordered Silica Mesophases Using Mixed Surfactant Systems as Templates. Angewandte Chemie - International Edition, 2002, 41, 3844-3848.	7.2	21
116	Bifunctional pH-sensitive Zn(ii)–curcumin nanoparticles/siRNA effectively inhibit growth of human bladder cancer cells in vitro and in vivo. Journal of Materials Chemistry B, 2014, 2, 2714.	2.9	21
117	A non-interpenetrating 2D coordination polymer from a (CH2)8 spacer-based highly flexible linear ligand and AgCF3CO2Electronic supplementary information (ESI) available: 1H NMR spectra and data for C8TQ and complex 1 and the 3-D structure of complex 1. See http://www.rsc.org/suppdata/ni/b3/b301777i. New Journal of Chemistry. 2003, 27, 790-792.	1.4	20
118	The preparation of a highly ordered long-range lamellar silica structure with large interlayer spacingsElectronic supplementary information (ESI) available: Figs. S1–3: XRD, adsorption–desorption isotherms and SEM image. See http://www.rsc.org/suppdata/cc/b2/b204053k/. Chemical Communications, 2002, 1614-1615.	2.2	19
119	Selective and sensitive colorimetric detection of copper ions based on anti-aggregation of the glutathione-induced aggregated gold nanoparticles and its application for determining sulfide anions. RSC Advances, 2013, 3, 21424.	1.7	19
120	A new fluorescent probe for monitoring amyloid fibrillation with high sensitivity and reliability. RSC Advances, 2013, 3, 21092.	1.7	19
121	Honeycomb-like g-C3N4/CeO2-x nanosheets obtained via one step hydrothermal-roasting for efficient and stable Cr(VI) photo-reduction. Chinese Chemical Letters, 2020, 31, 2747-2751.	4.8	19
122	Facile construction of highly porous carbon materials derived from porous aromatic frameworks for greenhouse gas adsorption and separation. Microporous and Mesoporous Materials, 2021, 326, 111385.	2.2	19
123	Convenient and sensitive synchronous fluorescence detection of trace TNT based on FRET using FITC–PAH as a probe. Analytical Methods, 2013, 5, 603-607.	1.3	18
124	Dipole-directed assembly of Fe ₃ O ₄ nanoparticles into nanorings via oriented attachment. CrystEngComm, 2014, 16, 1482-1487.	1.3	18
125	Highly Ordered Lamellar Silica/Surfactant Composites Templated from Nonionic Amphiphilic Copolymer. Chemistry of Materials, 2002, 14, 3625-3627.	3.2	17
126	Erbium oxide as a novel support for palladium nanocatalysts with strong metal–support interactions: remarkable catalytic performance in hydrogenation reactions. New Journal of Chemistry, 2018, 42, 19901-19907.	1.4	17

AN-Wu Xu

#	Article	IF	CITATIONS
127	Selenium phosphorus co-doped cobalt oxide nanosheets anchored on Co foil: A self-supported and stable bifunctional electrode for efficient electrochemical water splitting. Electrochimica Acta, 2018, 292, 247-255.	2.6	17
128	In situ integration of Co5.47N and Co0.72Fe0.28 alloy nanoparticles into intertwined carbon network for efficient oxygen reduction. Journal of Colloid and Interface Science, 2020, 569, 267-276.	5.0	17
129	Synthesis of graphitic mesoporous carbon supported Ce-doped nickel catalyst for steam reforming of toluene. Materials Letters, 2019, 244, 123-125.	1.3	16
130	Selenium-doped two-photon fluorescent carbon nanodots for in-situ free radical scavenging in mitochondria. Journal of Colloid and Interface Science, 2020, 567, 402-409.	5.0	16
131	Arming wood carbon with carbon-coated mesoporous nickel-silica nanolayer as monolithic composite catalyst for steam reforming of toluene. Journal of Colloid and Interface Science, 2021, 599, 650-660.	5.0	16
132	Interfacial Tiî€,N bonding of a g-C ₃ N ₄ /TiH _{1.92} type-II heterojunction photocatalytic hydrogen evolution from water splitting. Catalysis Science and Technology, 2022, 12, 2023-2029.	2.1	16
133	Highly Ordered Lamellar Mesostructure of Nanocrystalline PbSO4 Prepared by Hydrothermal Treatment. Journal of Physical Chemistry C, 2009, 113, 18473-18479.	1.5	14
134	Biomolecular <scp>l</scp> -tryptophan as a hole mediator anchored on g-C ₃ N ₄ exhibits remarkably enhanced photocatalytic H ₂ evolution. Catalysis Science and Technology, 2021, 11, 4776-4782.	2.1	14
135	Highly uniform CeO2 hierarchical microstructures: Facile synthesis and catalytic activity evaluation. Applied Surface Science, 2012, 263, 769-776.	3.1	13
136	Efficient catalytic reduction of azo dyes by N,N-dimethylformamide mediated by viologen. New Journal of Chemistry, 2014, 38, 4661-4665.	1.4	13
137	A simple and general route to prepare functional mesoporous double-metal oxy(hydroxide). Journal of Materials Chemistry A, 2019, 7, 7932-7938.	5.2	13
138	Improving flashing light frequency and CO2 fixation rate with vortex movement of algal cells in raceway pond with conic baffles. Chemical Engineering Science, 2020, 216, 115536.	1.9	13
139	A novel route to prepare N-graphene/SnO ₂ composite as a high-performance anode for lithium batteries. Dalton Transactions, 2018, 47, 10206-10212.	1.6	12
140	Supramolecular Architectures Based on trans -Oxamidato-Bridged Copper(II) Synthons and Intramolecular Synergism. Comments on Inorganic Chemistry, 2002, 23, 231-248.	3.0	11
141	Hantzsch ester as hole relay significantly enhanced photocatalytic hydrogen production. Catalysis Science and Technology, 2018, 8, 6123-6128.	2.1	11
142	Surface functionalized red fluorescent dual-metallic Au/Ag nanoclusters for endoplasmic reticulum imaging. Mikrochimica Acta, 2020, 187, 606.	2.5	11
143	Novel Surfactants for the Synthesis of Unusual Highly Ordered Lamellar Oxides. Journal of Physical Chemistry B, 2002, 106, 11713-11715.	1.2	10
144	Facile synthesis of anionic porous organic polymer for ethylene purification. Journal of Colloid and Interface Science, 2021, 582, 631-637.	5.0	10

#	Article	IF	CITATIONS
145	A novel and environmentally friendly colorimetric method for detection of cystine in human urine using unmodified gold nanoparticles. RSC Advances, 2014, 4, 27297-27300.	1.7	9
146	Hydrogenation/oxidation triggered highly efficient reversible color switching of organic molecules. Catalysis Science and Technology, 2017, 7, 1379-1385.	2.1	9
147	Precursor-reforming protocol to synthesis of porous N-doped g-C3N4 for highly improved photocatalytic water treatments. Materials Letters, 2020, 264, 127329.	1.3	9
148	A highly-ordered and uniform sunflower-like dendritic silver nanocomplex array as reproducible SERS substrate. RSC Advances, 2015, 5, 3860-3867.	1.7	8
149	"Healing―Effect of Graphene Oxide in Achieving Robust Dilute Ferromagnetism in Oxygen-Deficient Titanium Dioxide. Journal of Physical Chemistry C, 2017, 121, 22806-22814.	1.5	8
150	A multifunctional α-Fe ₂ O ₃ @PEDOT core–shell nanoplatform for gene and photothermal combination anticancer therapy. Journal of Materials Chemistry B, 2022, 10, 1453-1462.	2.9	8
151	Plasmon enhanced photocurrent in strongly coupled Ag@perylene core–shell nanowires. Journal of Materials Chemistry A, 2015, 3, 12845-12851.	5.2	7
152	Self-templated synthesis of novel carbon nanoarchitectures for efficient electrocatalysis. Scientific Reports, 2016, 6, 28049.	1.6	7
153	Highly efficient redox-driven reversible color switching of dye molecules via hydrogenation/oxygenation. Chemical Communications, 2017, 53, 360-363.	2.2	7
154	Construction of hierarchically porous biomass carbon using iodine as pore-making agent for energy storage. Journal of Colloid and Interface Science, 2021, 599, 351-359.	5.0	7
155	Graphitic Carbon Nitride Decorated with Nickel(II)-(3-Pyridyl) Benzimidazole Complexes and Pt Nanoparticles as a Cocatalyst for Photocatalytic Hydrogen Production from Water Splitting. ACS Applied Nano Materials, 2020, 3, 10659-10667.	2.4	6
156	Metal–organic framework derived nitrogen-doped carbon-RhNi alloys anchored on graphene for highly efficient hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 2676-2684.	3.0	6
157	Sulfur doped ruthenium nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction in alkaline media. Catalysis Science and Technology, 2021, 11, 3865-3872.	2.1	6
158	Mechanistic insights into <i>N</i> -hydroxyphthalimide modified graphitic carbon nitride boosted photocatalytic hydrogen production. Catalysis Science and Technology, 2019, 9, 5441-5446.	2.1	5
159	Facile synthesis of highly porous hyperâ€crossâ€linked polymer for light hydrocarbon separation. Polymer Engineering and Science, 2021, 61, 662-668.	1.5	5
160	Ultra-small Pd Nanoparticles Supported on Porous g-C3N4 Nanosheet for Efficient Hydrogenation Reaction. Catalysis Letters, 2022, 152, 2200-2205.	1.4	5
161	Highly active and durable Pd nanocatalyst promoted by an oxygen-deficient terbium oxide (Tb4O7â~'x) support for hydrogenation and cross-coupling reactions. New Journal of Chemistry, 2019, 43, 9210-9215.	1.4	4
162	In Situ Polymerized Polydopamine Nanoparticles as Enhanced Polymer Composite Electrolyte for Allâ€Solidâ€State Lithiumâ€ion Batteries. ChemElectroChem, 2022, 9, .	1.7	4

#	Article	IF	CITATIONS
163	Entropically Driven Formation of Ultralong Helical Mesostructured Organosilica Nanofibers. Small, 2014, 10, 888-894.	5.2	3
164	Catalytic Conversion of Biomass into Hydrocarbons over Nobleâ€Metalâ€Free VOâ€Substituted Potassium Salt of Phosphotungstic Acid. ChemistrySelect, 2017, 2, 8625-8631.	0.7	3
165	Pd Nanoparticles Capped with [CpPd(II)Cl] ₂ Complexes for Hydrogenation and Acid-Free Acetalization of α,β-Unsaturated Aldehydes. ACS Applied Nano Materials, 2019, 2, 5634-5642.	2.4	3
166	Preparation of Rod-Like YF3Superstructures by a Facile Incubation Method. Materials and Manufacturing Processes, 2013, 28, 130-132.	2.7	2
167	Integrating a metal framework with Co-confined carbon nanotubes as trifunctional electrocatalysts to boost electron and mass transfer approaching practical applications. Nanoscale, 2021, 13, 12651-12658.	2.8	2
168	Reply to the Comment on Spontaneously Ordered Solâ^'Gel Composites with Submicrometer Periodicity. Chemistry of Materials, 2004, 16, 198-198.	3.2	1
169	Steering the Assembly and Disassembly of Active Pd Sites in Organometallic Networks for Electrocatalytic Performance and Organic Transformation. Advanced Functional Materials, 2021, 31, 2009557	7.8	1