Janet H Iwasa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4765118/publications.pdf

Version: 2024-02-01

22 2,365 14 21 papers citations h-index g-index

24 24 24 3846
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nature Reviews Molecular Cell Biology, 2017, 18, 407-422.	37.0	828
2	Reverse-topology membrane scission by the ESCRT proteins. Nature Reviews Molecular Cell Biology, 2017, 18, 5-17.	37.0	358
3	Architecture of the type IVa pilus machine. Science, 2016, 351, aad2001.	12.6	347
4	Spatial and Temporal Relationships between Actin-Filament Nucleation, Capping, and Disassembly. Current Biology, 2007, 17, 395-406.	3.9	197
5	Structure of the Cdc48 segregase in the act of unfolding an authentic substrate. Science, 2019, 365, 502-505.	12.6	138
6	Membrane constriction and thinning by sequential ESCRT-III polymerization. Nature Structural and Molecular Biology, 2020, 27, 392-399.	8.2	77
7	Dicer uses distinct modules for recognizing dsRNA termini. Science, 2018, 359, 329-334.	12.6	76
8	Phosphorylation of the Arp2/3 complex is necessary to nucleate actin filaments. Journal of Cell Biology, 2008, 182, 647-654.	5.2	64
9	Selective inhibition of CDK7 reveals high-confidence targets and new models for TFIIH function in transcription. Genes and Development, 2020, 34, 1452-1473.	5.9	47
10	Animating the model figure. Trends in Cell Biology, 2010, 20, 699-704.	7.9	41
11	Structure of Vps4 with circular peptides and implications for translocation of two polypeptide chains by AAA+ ATPases. ELife, 2019, 8 , .	6.0	41
12	Bringing macromolecular machinery to life using 3D animation. Current Opinion in Structural Biology, 2015, 31, 84-88.	5.7	34
13	Multidomain Control Over TEC Kinase Activation State Tunes the T Cell Response. Annual Review of Immunology, 2018, 36, 549-578.	21.8	25
14	Sister Chromatids Fail to Separate during an Induced Endoreplication Cycle in Drosophila Embryos. Current Biology, 2002, 12, 829-833.	3.9	22
15	SynapsEM: Computer-Assisted Synapse Morphometry. Frontiers in Synaptic Neuroscience, 2020, 12, 584549.	2.5	20
16	Crafting a career in molecular animation. Molecular Biology of the Cell, 2014, 25, 2891-2893.	2.1	12
17	Using 3D Animation to Visualize Hypotheses. Trends in Biochemical Sciences, 2020, 45, 633-634.	7.5	10
18	The Scientist as Illustrator. Trends in Immunology, 2016, 37, 247-250.	6.8	9

#	Article	IF	CITATION
19	Preparing scientists for a visual future. EMBO Reports, 2019, 20, e49347.	4.5	9
20	Non-neural surface ectodermal rosette formation and F-actin dynamics drive mammalian neural tube closure. Biochemical and Biophysical Research Communications, 2020, 526, 647-653.	2.1	6
21	Using animation to mediate scientific discourse. Nature Microbiology, 2022, 7, 3-3.	13.3	3
22	Animating Molecular Machines. Microscopy and Microanalysis, 2020, 26, 122-123.	0.4	0