
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/476411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective inhibition of BET bromodomains. Nature, 2010, 468, 1067-1073.	13.7	3,456
2	Histone Recognition and Large-Scale Structural Analysis of the Human Bromodomain Family. Cell, 2012, 149, 214-231.	13.5	1,368
3	Targeting bromodomains: epigenetic readers of lysine acetylation. Nature Reviews Drug Discovery, 2014, 13, 337-356.	21.5	1,044
4	The promise and peril of chemical probes. Nature Chemical Biology, 2015, 11, 536-541.	3.9	698
5	Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature, 2014, 509, 492-496.	13.7	425
6	Large-Scale Structural Analysis of the Classical Human Protein Tyrosine Phosphatome. Cell, 2009, 136, 352-363.	13.5	421
7	Linear Motif Atlas for Phosphorylation-Dependent Signaling. Science Signaling, 2008, 1, ra2.	1.6	418
8	RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19754-19759.	3.3	391
9	Bromodomains as therapeutic targets. Expert Reviews in Molecular Medicine, 2011, 13, e29.	1.6	368
10	Small-Molecule Inhibition of BRDT for Male Contraception. Cell, 2012, 150, 673-684.	13.5	353
11	A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20523-20528.	3.3	342
12	Trends in kinase drug discovery: targets, indications and inhibitor design. Nature Reviews Drug Discovery, 2021, 20, 839-861.	21.5	340
13	Exploration of Type II Binding Mode: A Privileged Approach for Kinase Inhibitor Focused Drug Discovery?. ACS Chemical Biology, 2014, 9, 1230-1241.	1.6	337
14	Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature, 2014, 508, 222-227.	13.7	336
15	The bromodomain interaction module. FEBS Letters, 2012, 586, 2692-2704.	1.3	325
16	Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nature Chemical Biology, 2014, 10, 305-312.	3.9	296
17	Comprehensive characterization of the Published Kinase Inhibitor Set. Nature Biotechnology, 2016, 34, 95-103.	9.4	289
18	The (un)targeted cancer kinome. Nature Chemical Biology, 2010, 6, 166-169.	3.9	267

#	Article	IF	CITATIONS
19	Druggability Analysis and Structural Classification of Bromodomain Acetyl-lysine Binding Sites. Journal of Medicinal Chemistry, 2012, 55, 7346-7359.	2.9	254
20	Accurate calculation of the absolute free energy of binding for drug molecules. Chemical Science, 2016, 7, 207-218.	3.7	248
21	Discovery and Optimization of Small-Molecule Ligands for the CBP/p300 Bromodomains. Journal of the American Chemical Society, 2014, 136, 9308-9319.	6.6	244
22	The ins and outs of selective kinase inhibitor development. Nature Chemical Biology, 2015, 11, 818-821.	3.9	220
23	PFI-1, a Highly Selective Protein Interaction Inhibitor, Targeting BET Bromodomains. Cancer Research, 2013, 73, 3336-3346.	0.4	218
24	3,5-Dimethylisoxazoles Act As Acetyl-lysine-mimetic Bromodomain Ligands. Journal of Medicinal Chemistry, 2011, 54, 6761-6770.	2.9	204
25	Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nature Chemical Biology, 2010, 6, 359-368.	3.9	201
26	CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proceedings of the United States of America, 2015, 112, 10768-10773.	3.3	200
27	Quantitative, Wide-Spectrum Kinase Profiling in Live Cells for Assessing the Effect of Cellular ATP on Target Engagement. Cell Chemical Biology, 2018, 25, 206-214.e11.	2.5	197
28	Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy. Cancer Research, 2015, 75, 5106-5119.	0.4	193
29	Structural Coupling of SH2-Kinase Domains Links Fes and Abl Substrate Recognition and Kinase Activation. Cell, 2008, 134, 793-803.	13.5	190
30	A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nature Chemical Biology, 2014, 10, 853-860.	3.9	187
31	Identification of a Chemical Probe for Bromo and Extra C-Terminal Bromodomain Inhibition through Optimization of a Fragment-Derived Hit. Journal of Medicinal Chemistry, 2012, 55, 9831-9837.	2.9	184
32	Structural Analysis Identifies Imidazo[1,2- <i>b</i>]Pyridazines as PIM Kinase Inhibitors with <i>In vitro</i> Antileukemic Activity. Cancer Research, 2007, 67, 6916-6924.	0.4	183
33	Structure of the Pseudokinase VRK3 Reveals a Degraded Catalytic Site, a Highly Conserved Kinase Fold, and a Putative Regulatory Binding Site. Structure, 2009, 17, 128-138.	1.6	180
34	Inhibition of protein–protein interactions: The discovery of druglike βâ€catenin inhibitors by combining virtual and biophysical screening. Proteins: Structure, Function and Bioinformatics, 2006, 64, 60-67.	1.5	177
35	Selectivity, Cocrystal Structures, and Neuroprotective Properties of Leucettines, a Family of Protein Kinase Inhibitors Derived from the Marine Sponge Alkaloid Leucettamine B. Journal of Medicinal Chemistry, 2012, 55, 9312-9330.	2.9	174
36	Specific CLK Inhibitors from a Novel Chemotype for Regulation of Alternative Splicing. Chemistry and Biology, 2011, 18, 67-76.	6.2	173

#	Article	IF	CITATIONS
37	The Cysteinome of Protein Kinases as a Target in Drug Development. Angewandte Chemie - International Edition, 2018, 57, 4372-4385.	7.2	173
38	Structure-Based Design of an in Vivo Active Selective BRD9 Inhibitor. Journal of Medicinal Chemistry, 2016, 59, 4462-4475.	2.9	172
39	Structure and Substrate Specificity of the Pim-1 Kinase. Journal of Biological Chemistry, 2005, 280, 41675-41682.	1.6	164
40	Progress in the Development and Application of Small Molecule Inhibitors of Bromodomain–Acetyl-lysine Interactions. Journal of Medicinal Chemistry, 2012, 55, 9393-9413.	2.9	160
41	Structure of the Bone Morphogenetic Protein Receptor ALK2 and Implications for Fibrodysplasia Ossificans Progressiva. Journal of Biological Chemistry, 2012, 287, 36990-36998.	1.6	159
42	Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. EMBO Journal, 2008, 27, 704-714.	3.5	147
43	Structure of LRRK2 in Parkinson's disease and model for microtubule interaction. Nature, 2020, 588, 344-349.	13.7	147
44	Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3.0 Ã resolution. Journal of Molecular Biology, 1997, 267, 916-932.	2.0	146
45	Kinase Inhibitor Selectivity Profiling Using Differential Scanning Fluorimetry. Methods in Molecular Biology, 2012, 795, 109-118.	0.4	145
46	Structure and functional characterization of the atypical human kinase haspin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20198-20203.	3.3	144
47	Salt-Inducible Kinase 2 Couples Ovarian Cancer Cell Metabolism with Survival at the Adipocyte-Rich Metastatic Niche. Cancer Cell, 2016, 30, 273-289.	7.7	143
48	Structural Basis of Inhibitor Specificity of the Human Protooncogene Proviral Insertion Site in Moloney Murine Leukemia Virus (PIM-1) Kinase. Journal of Medicinal Chemistry, 2005, 48, 7604-7614.	2.9	141
49	A public-private partnership to unlock the untargeted kinome. Nature Chemical Biology, 2013, 9, 3-6.	3.9	141
50	LP99: Discovery and Synthesis of the First Selective BRD7/9 Bromodomain Inhibitor. Angewandte Chemie - International Edition, 2015, 54, 6217-6221.	7.2	137
51	Bromodomain-peptide displacement assays for interactome mapping and inhibitor discovery. Molecular BioSystems, 2011, 7, 2899.	2.9	136
52	Discovery and Characterization of GSK2801, a Selective Chemical Probe for the Bromodomains BAZ2A and BAZ2B. Journal of Medicinal Chemistry, 2016, 59, 1410-1424.	2.9	133
53	Predictions of Ligand Selectivity from Absolute Binding Free Energy Calculations. Journal of the American Chemical Society, 2017, 139, 946-957.	6.6	132
54	Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS ONE, 2017, 12, e0181585.	1.1	131

#	Article	IF	CITATIONS
55	Leucettines, a Class of Potent Inhibitors of cdc2-Like Kinases and Dual Specificity, Tyrosine Phosphorylation Regulated Kinases Derived from the Marine Sponge Leucettamine B: Modulation of Alternative Pre-RNA Splicing. Journal of Medicinal Chemistry, 2011, 54, 4172-4186.	2.9	130
56	Structures of Down Syndrome Kinases, DYRKs, Reveal Mechanisms of Kinase Activation and Substrate Recognition. Structure, 2013, 21, 986-996.	1.6	127
57	Family-wide Structural Analysis of Human Numb-Associated Protein Kinases. Structure, 2016, 24, 401-411.	1.6	124
58	The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene, 2017, 36, 122-132.	2.6	120
59	NMR-Based Screening with Competition Waterâ^'Ligand Observed via Gradient Spectroscopy Experiments:Â Detection of High-Affinity Ligands. Journal of Medicinal Chemistry, 2002, 45, 2610-2614.	2.9	118
60	DNA Damage in Oocytes Induces a Switch of the Quality Control Factor TAp63α from Dimer to Tetramer. Cell, 2011, 144, 566-576.	13.5	117
61	Discovery of Novel Small-Molecule Inhibitors of BRD4 Using Structure-Based Virtual Screening. Journal of Medicinal Chemistry, 2013, 56, 8073-8088.	2.9	116
62	Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family. Bioorganic and Medicinal Chemistry, 2012, 20, 1878-1886.	1.4	112
63	Selective targeting of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cell maintenance. Science Advances, 2015, 1, e1500723.	4.7	112
64	Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63. Nature Structural and Molecular Biology, 2018, 25, 261-269.	3.6	112
65	A Series of Potent CREBBP Bromodomain Ligands Reveals an Inducedâ€Fit Pocket Stabilized by a Cation–π Interaction. Angewandte Chemie - International Edition, 2014, 53, 6126-6130.	7.2	108
66	Statistical Analysis on the Performance of Molecular Mechanics Poisson–Boltzmann Surface Area versus Absolute Binding Free Energy Calculations: Bromodomains as a Case Study. Journal of Chemical Information and Modeling, 2017, 57, 2203-2221.	2.5	108
67	Kinase Domain Insertions Define Distinct Roles of CLK Kinases in SR Protein Phosphorylation. Structure, 2009, 17, 352-362.	1.6	106
68	Crystal Structures of the p21-Activated Kinases PAK4, PAK5, and PAK6 Reveal Catalytic Domain Plasticity of Active Group II PAKs. Structure, 2007, 15, 201-213.	1.6	105
69	High-Throughput Kinase Profiling: A More Efficient Approach toward the Discovery of New Kinase Inhibitors. Chemistry and Biology, 2011, 18, 868-879.	6.2	105
70	Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer. Cell Reports, 2017, 19, 2045-2059.	2.9	99
71	A small-molecule inhibitor of Haspin alters the kinetochore functions of Aurora B. Journal of Cell Biology, 2012, 199, 269-284.	2.3	96
72	Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket. Cell Chemical Biology, 2016, 23, 1335-1340.	2.5	96

#	Article	IF	CITATIONS
73	Mechanism and consequence of the autoactivation of p38α mitogen-activated protein kinase promoted by TAB1. Nature Structural and Molecular Biology, 2013, 20, 1182-1190.	3.6	95
74	Thermal Unfolding of the DNA-binding Protein Sso7d from the HyperthermophileSulfolobus solfataricus. Journal of Molecular Biology, 1996, 264, 1132-1144.	2.0	93
75	Targeting Low-Druggability Bromodomains: Fragment Based Screening and Inhibitor Design against the BAZ2B Bromodomain. Journal of Medicinal Chemistry, 2013, 56, 10183-10187.	2.9	92
76	Identification of a Major Determinant for Serine-Threonine Kinase Phosphoacceptor Specificity. Molecular Cell, 2014, 53, 140-147.	4.5	91
77	Structure Enabled Design of BAZ2-ICR, A Chemical Probe Targeting the Bromodomains of BAZ2A and BAZ2B. Journal of Medicinal Chemistry, 2015, 58, 2553-2559.	2.9	90
78	Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia. Science Advances, 2016, 2, e1600760.	4.7	90
79	BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire. Nucleic Acids Research, 2017, 45, 127-141.	6.5	90
80	Thermodynamic characterization of non-sequence-specific DNA-binding by the Sso7d protein from Sulfolobus solfataricus. Journal of Molecular Biology, 1998, 276, 775-786.	2.0	88
81	10-lodo-11 <i>H</i> -indolo[3,2- <i>c</i>]quinoline-6-carboxylic Acids Are Selective Inhibitors of DYRK1A. Journal of Medicinal Chemistry, 2015, 58, 3131-3143.	2.9	87
82	Alternative splicing promotes tumour aggressiveness and drug resistance in African American prostate cancer. Nature Communications, 2017, 8, 15921.	5.8	87
83	Activation segment exchange: a common mechanism of kinase autophosphorylation?. Trends in Biochemical Sciences, 2007, 32, 351-356.	3.7	86
84	Discovery of a Chemical Tool Inhibitor Targeting the Bromodomains of TRIM24 and BRPF. Journal of Medicinal Chemistry, 2016, 59, 1642-1647.	2.9	86
85	Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene, 2016, 35, 4423-4436.	2.6	86
86	Chemoproteomics and Chemical Probes for Target Discovery. Trends in Biotechnology, 2018, 36, 1275-1286.	4.9	86
87	A chemical toolbox for the study of bromodomains and epigenetic signaling. Nature Communications, 2019, 10, 1915.	5.8	85
88	[1,2,4]Triazolo[4,3- <i>a</i>]phthalazines: Inhibitors of Diverse Bromodomains. Journal of Medicinal Chemistry, 2014, 57, 462-476.	2.9	84
89	Donated chemical probes for open science. ELife, 2018, 7, .	2.8	80
90	Identification of a Chemical Probe for Family VIII Bromodomains through Optimization of a Fragment Hit. Journal of Medicinal Chemistry, 2016, 59, 4800-4811.	2.9	79

#	Article	IF	CITATIONS
91	Crystal Structure of Human Aurora B in Complex with INCENP and VX-680. Journal of Medicinal Chemistry, 2012, 55, 7841-7848.	2.9	77
92	Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells. Journal of Molecular Cell Biology, 2016, 8, 349-362.	1.5	76
93	Type II Inhibitors Targeting CDK2. ACS Chemical Biology, 2015, 10, 2116-2125.	1.6	75
94	PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nature Chemical Biology, 2020, 16, 1179-1188.	3.9	73
95	Mapping the Endothelial Cell <i>S</i> -Sulfhydrome Highlights the Crucial Role of Integrin Sulfhydration in Vascular Function. Circulation, 2021, 143, 935-948.	1.6	70
96	Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching. Epigenetics and Chromatin, 2014, 7, 14.	1.8	69
97	Discovery of a PCAF Bromodomain Chemical Probe. Angewandte Chemie - International Edition, 2017, 56, 827-831.	7.2	69
98	Novel p38α MAP kinase inhibitors identified from yoctoReactor DNA-encoded small molecule library. MedChemComm, 2016, 7, 1332-1339.	3.5	68
99	A Comparison of Protein Kinases Inhibitor Screening Methods Using Both Enzymatic Activity and Binding Affinity Determination. PLoS ONE, 2014, 9, e98800.	1.1	67
100	Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene, 2021, 40, 3637-3654.	2.6	66
101	Novel Inverse Binding Mode of Indirubin Derivatives Yields Improved Selectivity for DYRK Kinases. ACS Medicinal Chemistry Letters, 2013, 4, 22-26.	1.3	65
102	7,8-Dichloro-1-oxo-β-carbolines as a Versatile Scaffold for the Development of Potent and Selective Kinase Inhibitors with Unusual Binding Modes. Journal of Medicinal Chemistry, 2012, 55, 403-413.	2.9	64
103	The design and synthesis of 5- and 6-isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains. MedChemComm, 2013, 4, 140-144.	3.5	63
104	Design and synthesis of potent and selective inhibitors of BRD7 and BRD9 bromodomains. MedChemComm, 2015, 6, 1381-1386.	3.5	63
105	Bromo-deaza-SAH: A potent and selective DOT1L inhibitor. Bioorganic and Medicinal Chemistry, 2013, 21, 1787-1794.	1.4	62
106	The Kinase Chemogenomic Set (KCGS): An Open Science Resource for Kinase Vulnerability Identification. International Journal of Molecular Sciences, 2021, 22, 566.	1.8	62
107	Development of a potent and selective chemical probe for the pleiotropic kinase CK2. Cell Chemical Biology, 2021, 28, 546-558.e10.	2.5	62
108	Insights for the development of specific kinase inhibitors by targeted structural genomics. Drug Discovery Today, 2007, 12, 365-372.	3.2	60

#	Article	IF	CITATIONS
109	Molecular Basis of Histone Tail Recognition by Human TIP5 PHD Finger and Bromodomain of the Chromatin Remodeling Complex NoRC. Structure, 2015, 23, 80-92.	1.6	59
110	The MAPK Pathway Regulates Intrinsic Resistance to BET Inhibitors in Colorectal Cancer. Clinical Cancer Research, 2017, 23, 2027-2037.	3.2	59
111	Discovery of an MLLT1/3 YEATS Domain Chemical Probe. Angewandte Chemie - International Edition, 2018, 57, 16302-16307.	7.2	58
112	Binding Kinetics Survey of the Drugged Kinome. Journal of the American Chemical Society, 2018, 140, 15774-15782.	6.6	57
113	Structure of cyclin G-associated kinase (GAK) trapped in different conformations using nanobodies. Biochemical Journal, 2014, 459, 59-69.	1.7	56
114	SGC-GAK-1: A Chemical Probe for Cyclin G Associated Kinase (GAK). Journal of Medicinal Chemistry, 2019, 62, 2830-2836.	2.9	56
115	Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. Molecular Cell, 2020, 79, 390-405.e7.	4.5	56
116	The Structural Basis of PI3K Cancer Mutations: From Mechanism to Therapy. Cancer Research, 2014, 74, 641-646.	0.4	55
117	Selective Inhibitors of Cyclin G Associated Kinase (GAK) as Anti-Hepatitis C Agents. Journal of Medicinal Chemistry, 2015, 58, 3393-3410.	2.9	54
118	A Specific and Covalent JNKâ€1 Ligand Selected from an Encoded Selfâ€Assembling Chemical Library. Chemistry - A European Journal, 2017, 23, 8152-8155.	1.7	54
119	Large-scale analysis of water stability in bromodomain binding pockets with grand canonical Monte Carlo. Communications Chemistry, 2018, 1, .	2.0	52
120	Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level. ELife, 2016, 5, .	2.8	52
121	Thermal unfolding of small proteins with SH3 domain folding pattern. , 1998, 31, 309-319.		51
122	BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8668-E8677.	3.3	50
123	Stochastic detection of Pim protein kinases reveals electrostatically enhanced association of a peptide substrate. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4417-26.	3.3	49
124	Recently targeted kinases and their inhibitors—the path to clinical trials. Current Opinion in Pharmacology, 2014, 17, 58-63.	1.7	49
125	Identification and Development of 2,3-Dihydropyrrolo[1,2- <i>a</i>]quinazolin-5(1 <i>H</i>)-one Inhibitors Targeting Bromodomains within the Switch/Sucrose Nonfermenting Complex. Journal of Medicinal Chemistry, 2016, 59, 5095-5101.	2.9	49
126	Development of Selective CBP/P300 Benzoxazepine Bromodomain Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 8889-8912.	2.9	49

#	Article	IF	CITATIONS
127	Structure-based approaches towards identification of fragments for the low-druggability ATAD2 bromodomain. MedChemComm, 2014, 5, 1843-1848.	3.5	46
128	Preclinical target validation using patient-derived cells. Nature Reviews Drug Discovery, 2015, 14, 149-150.	21.5	46
129	Development, Optimization, and Structure–Activity Relationships of Covalent-Reversible JAK3 Inhibitors Based on a Tricyclic Imidazo[5,4- <i>d</i>]pyrrolo[2,3- <i>b</i>]pyridine Scaffold. Journal of Medicinal Chemistry, 2018, 61, 5350-5366.	2.9	46
130	Defined PEG smears as an alternative approach to enhance the search for crystallization conditions and crystal-quality improvement in reduced screens. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1627-1639.	2.5	45
131	Halogen–Aromatic π Interactions Modulate Inhibitor Residence Times. Angewandte Chemie - International Edition, 2018, 57, 7220-7224.	7.2	45
132	Designing Dual Inhibitors of Anaplastic Lymphoma Kinase (ALK) and Bromodomain-4 (BRD4) by Tuning Kinase Selectivity. Journal of Medicinal Chemistry, 2019, 62, 2618-2637.	2.9	45
133	BET inhibition as a new strategy for the treatment of gastric cancer. Oncotarget, 2016, 7, 43997-44012.	0.8	44
134	Pharmacoproteomic characterisation of human colon and rectal cancer. Molecular Systems Biology, 2017, 13, 951.	3.2	44
135	Tuning microtubule dynamics to enhance cancer therapy by modulating FER-mediated CRMP2 phosphorylation. Nature Communications, 2018, 9, 476.	5.8	44
136	Synthesis and Structure–Activity Relationships of 3,5-Disubstituted-pyrrolo[2,3- <i>b</i>]pyridines as Inhibitors of Adaptor-Associated Kinase 1 with Antiviral Activity. Journal of Medicinal Chemistry, 2019, 62, 5810-5831.	2.9	44
137	Single-Molecule Protein Phosphorylation and Dephosphorylation by Nanopore Enzymology. ACS Nano, 2019, 13, 633-641.	7.3	44
138	Modulating Androgen Receptor-Driven Transcription in Prostate Cancer with Selective CDK9 Inhibitors. Cell Chemical Biology, 2021, 28, 134-147.e14.	2.5	44
139	Mapping the chemical chromatin reactivation landscape identifies BRD4-TAF1 cross-talk. Nature Chemical Biology, 2016, 12, 504-510.	3.9	43
140	Leveraging Compound Promiscuity to Identify Targetable Cysteines within the Kinome. Cell Chemical Biology, 2019, 26, 818-829.e9.	2.5	43
141	Machine-assisted synthesis of modulators of the histone reader BRD9 using flow methods of chemistry and frontal affinity chromatography. MedChemComm, 2014, 5, 540-546.	3.5	42
142	Discovery and Optimization of a Selective Ligand for the Switch/Sucrose Nonfermenting-Related Bromodomains of Polybromo Protein-1 by the Use of Virtual Screening and Hydration Analysis. Journal of Medicinal Chemistry, 2016, 59, 8787-8803.	2.9	41
143	Cardiac myosin light chain is phosphorylated by Ca ²⁺ /calmodulin-dependent and -independent kinase activities. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3824-33.	3.3	41
144	Selective Targeting of Bromodomains of the Bromodomain-PHD Fingers Family Impairs Osteoclast Differentiation. ACS Chemical Biology, 2017, 12, 2619-2630.	1.6	41

#	Article	IF	CITATIONS
145	Quantifying Target Occupancy of Small Molecules Within Living Cells. Annual Review of Biochemistry, 2020, 89, 557-581.	5.0	41
146	BET bromodomain inhibitors. Current Opinion in Chemical Biology, 2022, 68, 102148.	2.8	40
147	Structure-Based Identification of Inhibitory Fragments Targeting the p300/CBP-Associated Factor Bromodomain. Journal of Medicinal Chemistry, 2016, 59, 1648-1653.	2.9	39
148	Synthetic Opportunities and Challenges for Macrocyclic Kinase Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 7991-8009.	2.9	39
149	Target 2035 – update on the quest for a probe for every protein. RSC Medicinal Chemistry, 2022, 13, 13-21.	1.7	39
150	Structure of the Human Protein Kinase MPSK1 Reveals an Atypical Activation Loop Architecture. Structure, 2008, 16, 115-124.	1.6	38
151	Design of a Biased Potent Small Molecule Inhibitor of the Bromodomain and PHD Finger-Containing (BRPF) Proteins Suitable for Cellular and in Vivo Studies. Journal of Medicinal Chemistry, 2017, 60, 668-680.	2.9	38
152	Co-targeting of BET proteins and HDACs as a novel approach to trigger apoptosis in rhabdomyosarcoma cells. Cancer Letters, 2018, 428, 160-172.	3.2	38
153	Furo[3,2â€ <i>b</i>]pyridine: A Privileged Scaffold for Highly Selective Kinase Inhibitors and Effective Modulators of the Hedgehog Pathway. Angewandte Chemie - International Edition, 2019, 58, 1062-1066.	7.2	38
154	Design, Synthesis, and Evaluation of WD-Repeat-Containing Protein 5 (WDR5) Degraders. Journal of Medicinal Chemistry, 2021, 64, 10682-10710.	2.9	38
155	Modulation of the Chromatin Phosphoproteome by the Haspin Protein Kinase. Molecular and Cellular Proteomics, 2014, 13, 1724-1740.	2.5	37
156	Discovery of a Selective Allosteric Inhibitor Targeting Macrodomain 2 of Polyadenosine-Diphosphate-Ribose Polymerase 14. ACS Chemical Biology, 2017, 12, 2866-2874.	1.6	37
157	Conservation of structure, function and inhibitor binding in UNC-51-like kinase 1 and 2 (ULK1/2). Biochemical Journal, 2019, 476, 875-887.	1.7	37
158	Structure-kinetic relationship reveals the mechanism of selectivity of FAK inhibitors over PYK2. Cell Chemical Biology, 2021, 28, 686-698.e7.	2.5	36
159	Analysis of conditions affecting auto-phosphorylation of human kinases during expression in bacteria. Protein Expression and Purification, 2012, 81, 136-143.	0.6	35
160	An Unusual Binding Model of the Methyl 9-Anilinothiazolo[5,4- <i>f</i>] quinazoline-2-carbimidates (EHT 1610 and EHT 5372) Confers High Selectivity for Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases. Journal of Medicinal Chemistry, 2016, 59, 10315-10321.	2.9	35
161	Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. Journal of Cell Biology, 2018, 217, 2951-2974.	2.3	35
162	Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35

#	Article	IF	CITATIONS
163	Discovery of pyrido[3,4-g]quinazoline derivatives as CMGC family protein kinase inhibitors: Design, synthesis, inhibitory potency and X-ray co–crystal structure. European Journal of Medicinal Chemistry, 2016, 118, 170-177.	2.6	34
164	New opportunities for kinase drug repurposing and target discovery. British Journal of Cancer, 2018, 118, 936-937.	2.9	34
165	Characterization of a dual <scp>BET</scp> / <scp>HDAC</scp> inhibitor for treatment of pancreatic ductal adenocarcinoma. International Journal of Cancer, 2020, 147, 2847-2861.	2.3	34
166	Crystal Structures of ABL-Related Gene (ABL2) in Complex with Imatinib, Tozasertib (VX-680), and a Type I Inhibitor of the Triazole Carbothioamide Class. Journal of Medicinal Chemistry, 2011, 54, 2359-2367.	2.9	33
167	Probing the epigenome. Nature Chemical Biology, 2015, 11, 542-545.	3.9	33
168	Differential Recognition Preferences of the Three Src Homology 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3). Journal of Biological Chemistry, 2015, 290, 25275-25292.	1.6	33
169	Hyperactive locomotion in a <i>Drosophila</i> model is a functional readout for the synaptic abnormalities underlying fragile X syndrome. Science Signaling, 2017, 10, .	1.6	33
170	Structure-Based Approach toward Identification of Inhibitory Fragments for Eleven-Nineteen-Leukemia Protein (ENL). Journal of Medicinal Chemistry, 2018, 61, 10929-10934.	2.9	33
171	Discovery of BET bromodomain inhibitors and their role in target validation. MedChemComm, 2014, 5, 288-296.	3.5	32
172	CBP/p300 Bromodomains Regulate Amyloid-like Protein Aggregation upon Aberrant Lysine Acetylation. Cell Chemical Biology, 2017, 24, 9-23.	2,5	32
173	New pyrido[3,4-g]quinazoline derivatives as CLK1 and DYRK1A inhibitors: synthesis, biological evaluation and binding mode analysis. European Journal of Medicinal Chemistry, 2019, 166, 304-317.	2.6	32
174	Deciphering the LRRK code: LRRK1 and LRRK2 phosphorylate distinct Rab proteins and are regulated by diverse mechanisms. Biochemical Journal, 2021, 478, 553-578.	1.7	32
175	Design, Synthesis, and Characterization of an Orally Active Dual-Specific ULK1/2 Autophagy Inhibitor that Synergizes with the PARP Inhibitor Olaparib for the Treatment of Triple-Negative Breast Cancer. Journal of Medicinal Chemistry, 2020, 63, 14609-14625.	2.9	30
176	Mutation in Abl kinase with altered drug-binding kinetics indicates a novel mechanism of imatinib resistance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	3.3	30
177	Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress. Nature Cancer, 2022, 3, 156-172.	5.7	30
178	Mechanism of TAp73 inhibition by ΔNp63 and structural basis of p63/p73 hetero-tetramerization. Cell Death and Differentiation, 2016, 23, 1930-1940.	5.0	29
179	NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin. Scientific Reports, 2017, 7, 5445.	1.6	29
180	The orphan nuclear receptor Nurr1 is responsive to non-steroidal anti-inflammatory drugs. Communications Chemistry, 2020, 3, .	2.0	29

#	Article	IF	CITATIONS
181	Structural Insights into Plasticity and Discovery of Remdesivir Metabolite GS-441524 Binding in SARS-CoV-2 Macrodomain. ACS Medicinal Chemistry Letters, 2021, 12, 603-609.	1.3	29
182	Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications. Frontiers in Molecular Biosciences, 2021, 8, 653148.	1.6	29
183	Identification of molecular targets for the targeted treatment of gastric cancer using dasatinib. Oncotarget, 2020, 11, 535-549.	0.8	29
184	Design of a Chemical Probe for the Bromodomain and Plant Homeodomain Finger-Containing (BRPF) Family of Proteins. Journal of Medicinal Chemistry, 2017, 60, 6998-7011.	2.9	28
185	An AKAP-Lbc-RhoA interaction inhibitor promotes the translocation of aquaporin-2 to the plasma membrane of renal collecting duct principal cells. PLoS ONE, 2018, 13, e0191423.	1.1	28
186	p63 uses a switch-like mechanism to set the threshold for induction of apoptosis. Nature Chemical Biology, 2020, 16, 1078-1086.	3.9	28
187	Structure-Based Design of Selective Salt-Inducible Kinase Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 8142-8160.	2.9	28
188	Structures of PGAM5 Provide Insight into Active Site Plasticity and Multimeric Assembly. Structure, 2017, 25, 1089-1099.e3.	1.6	27
189	Optimization of pyrazolo[1,5-a]pyrimidines lead to the identification of a highly selective casein kinase 2 inhibitor. European Journal of Medicinal Chemistry, 2020, 208, 112770.	2.6	27
190	Pim Kinase Inhibitors Evaluated with a Singleâ€Molecule Engineered Nanopore Sensor. Angewandte Chemie - International Edition, 2015, 54, 8154-8159.	7.2	26
191	DYRK1B mutations associated with metabolic syndrome impair the chaperone-dependent maturation of the kinase domain. Scientific Reports, 2017, 7, 6420.	1.6	26
192	DFG-1 Residue Controls Inhibitor Binding Mode and Affinity, Providing a Basis for Rational Design of Kinase Inhibitor Selectivity. Journal of Medicinal Chemistry, 2020, 63, 10224-10234.	2.9	26
193	Therapeutic targeting of p300/CBP HAT domain for the treatment of NUT midline carcinoma. Oncogene, 2020, 39, 4770-4779.	2.6	26
194	<scp>l</scp> -Thyroxin and the Nonclassical Thyroid Hormone TETRAC Are Potent Activators of PPARγ. Journal of Medicinal Chemistry, 2020, 63, 6727-6740.	2.9	26
195	Discovery of a novel allosteric inhibitor scaffold for polyadenosine-diphosphate-ribose polymerase 14 (PARP14) macrodomain 2. Bioorganic and Medicinal Chemistry, 2018, 26, 2965-2972.	1.4	25
196	Drugging the "Undruggable―MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. Cancer Research, 2021, 81, 1627-1632.	0.4	25
197	The novel dual BET/HDAC inhibitor TW09 mediates cell death by mitochondrial apoptosis in rhabdomyosarcoma cells. Cancer Letters, 2020, 486, 46-57.	3.2	24
198	Structural Insights into Interaction Mechanisms of Alternative Piperazine-urea YEATS Domain Binders in MLLT1. ACS Medicinal Chemistry Letters, 2019, 10, 1661-1666.	1.3	23

#	Article	IF	CITATIONS
199	Controlling the Covalent Reactivity of a Kinase Inhibitor with Light. Angewandte Chemie - International Edition, 2021, 60, 20178-20183.	7.2	23
200	Nucleotide Binding, Evolutionary Insights, and Interaction Partners of the Pseudokinase Unc-51-like Kinase 4. Structure, 2020, 28, 1184-1196.e6.	1.6	22
201	Demonstrating Ligandability of the LC3A and LC3B Adapter Interface. Journal of Medicinal Chemistry, 2021, 64, 3720-3746.	2.9	22
202	Molecular structures of cdc2-like kinases in complex with a new inhibitor chemotype. PLoS ONE, 2018, 13, e0196761.	1.1	21
203	Targeting Pim Kinases and DAPK3 to Control Hypertension. Cell Chemical Biology, 2018, 25, 1195-1207.e32.	2.5	21
204	Pan-SMARCA/PB1 Bromodomain Inhibitors and Their Role in Regulating Adipogenesis. Journal of Medicinal Chemistry, 2020, 63, 14680-14699.	2.9	21
205	Next-generation epigenetic inhibitors. Science, 2020, 368, 367-368.	6.0	20
206	TDP-43 Modulation by Tau-Tubulin Kinase 1 Inhibitors: A New Avenue for Future Amyotrophic Lateral Sclerosis Therapy. Journal of Medicinal Chemistry, 2022, 65, 1585-1607.	2.9	20
207	Smallâ€Molecule Modulators for Epigenetics Targets. ChemMedChem, 2013, 8, 1885-1891.	1.6	19
208	Selective Bisubstrate Inhibitors with Subâ€nanomolar Affinity for Protein Kinase Pimâ€1. ChemMedChem, 2013, 8, 909-913.	1.6	19
209	Structure of the Human Protein Kinase ZAK in Complex with Vemurafenib. ACS Chemical Biology, 2016, 11, 1595-1602.	1.6	19
210	Discovery of the First in Vivo Active Inhibitors of the Soluble Epoxide Hydrolase Phosphatase Domain. Journal of Medicinal Chemistry, 2019, 62, 8443-8460.	2.9	19
211	Catalytic Domain Plasticity of MKK7 Reveals Structural Mechanisms of Allosteric Activation and Diverse Targeting Opportunities. Cell Chemical Biology, 2020, 27, 1285-1295.e4.	2.5	19
212	Endogenous vitamin E metabolites mediate allosteric PPAR ^{î3} activation with unprecedented co-regulatory interactions. Cell Chemical Biology, 2021, 28, 1489-1500.e8.	2.5	19
213	Image-Based Annotation of Chemogenomic Libraries for Phenotypic Screening. Molecules, 2022, 27, 1439.	1.7	19
214	Bisubstrate Inhibitor Approach for Targeting Mitotic Kinase Haspin. Bioconjugate Chemistry, 2015, 26, 225-234.	1.8	18
215	Discovery of New Bromodomain Scaffolds by Biosensor Fragment Screening. ACS Medicinal Chemistry Letters, 2016, 7, 1213-1218.	1.3	18
216	Fast Iterative Synthetic Approach toward Identification of Novel Highly Selective p38 MAP Kinase Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 10757-10782.	2.9	18

#	Article	IF	CITATIONS
217	Activation by substoichiometric inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1414-1418.	3.3	18
218	Kinase Domain Is a Dynamic Hub for Driving LRRK2 Allostery. Frontiers in Molecular Neuroscience, 2020, 13, 538219.	1.4	18
219	Inhibitors of the Hippo Pathway Kinases STK3/MST2 and STK4/MST1 Have Utility for the Treatment of Acute Myeloid Leukemia. Journal of Medicinal Chemistry, 2022, 65, 1352-1369.	2.9	18
220	LRRK2 dynamics analysis identifies allosteric control of the crosstalk between its catalytic domains. PLoS Biology, 2022, 20, e3001427.	2.6	18
221	A Chemical Probe for Dark Kinase STK17B Derives Its Potency and High Selectivity through a Unique P-Loop Conformation. Journal of Medicinal Chemistry, 2020, 63, 14626-14646.	2.9	17
222	The Small-Molecule Inhibitor MRIA9 Reveals Novel Insights into the Cell Cycle Roles of SIK2 in Ovarian Cancer Cells. Cancers, 2021, 13, 3658.	1.7	17
223	Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability. PLoS ONE, 2016, 11, e0159180.	1.1	17
224	Quantitative Characterization of Bivalent Probes for a Dual Bromodomain Protein, Transcription Initiation Factor TFIID Subunit 1. Biochemistry, 2018, 57, 2140-2149.	1.2	16
225	Discovery of a Novel Class of Covalent Dual Inhibitors Targeting the Protein Kinases BMX and BTK. International Journal of Molecular Sciences, 2020, 21, 9269.	1.8	16
226	The Intersection of Structural and Chemical Biology - An Essential Synergy. Cell Chemical Biology, 2016, 23, 173-182.	2.5	15
227	Dietary Compound Resveratrol Is a Pan-BET Bromodomain Inhibitor. Nutrients, 2017, 9, 1172.	1.7	15
228	[b]-Annulated Halogen-Substituted Indoles as Potential DYRK1A Inhibitors. Molecules, 2019, 24, 4090.	1.7	15
229	A Highly Selective Chemical Probe for Activin Receptor-like Kinases ALK4 and ALK5. ACS Chemical Biology, 2020, 15, 862-870.	1.6	15
230	Oxaprozin Analogues as Selective RXR Agonists with Superior Properties and Pharmacokinetics. Journal of Medicinal Chemistry, 2021, 64, 5123-5136.	2.9	15
231	Nanobodies as allosteric modulators of Parkinson's disease–associated LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
232	Crystallization and Crystal Packing of Recombinant 3 (or 17) beta-Hydroxysteroid Dehydrogenase from Comamonas testosteroni ATTC 11996. FEBS Journal, 1996, 236, 144-148.	0.2	14
233	Stimulation of Hepatic Apolipoprotein A-I Production by Novel Thieno-Triazolodiazepines: Roles of the Classical Benzodiazepine Receptor, PAF Receptor, and Bromodomain Binding. Lipid Insights, 2013, 6, LPI.S13258.	1.0	14
234	Design of new disubstituted imidazo[1,2- <i>b</i>]pyridazine derivatives as selective Haspin inhibitors. Synthesis, binding mode and anticancer biological evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1840-1853.	2.5	14

#	Article	IF	CITATIONS
235	Development of a chemical probe against NUDT15. Nature Chemical Biology, 2020, 16, 1120-1128.	3.9	14
236	Bioisosteric Replacement of Arylamide-Linked Spine Residues with <i>N</i> -Acylhydrazones and Selenophenes as a Design Strategy to Novel Dibenzosuberone Derivatives as Type I 1/2 p38α MAP Kinase Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 7347-7354.	2.9	14
237	Lessons from LIMK1 enzymology and their impact on inhibitor design. Biochemical Journal, 2019, 476, 3197-3209.	1.7	14
238	Radiolabeled cCPE Peptides for SPECT Imaging of Claudin-4 Overexpression in Pancreatic Cancer. Journal of Nuclear Medicine, 2020, 61, 1756-1763.	2.8	13
239	Design of a "Two-in-One―Mutant-Selective Epidermal Growth Factor Receptor Inhibitor That Spans the Orthosteric and Allosteric Sites. Journal of Medicinal Chemistry, 2022, 65, 1370-1383.	2.9	13
240	PIM kinase-responsive microsecond-lifetime photoluminescent probes based on selenium-containing heteroaromatic tricycle. RSC Advances, 2015, 5, 96750-96757.	1.7	12
241	Thermodynamic properties of leukotriene A 4 hydrolase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 5243-5248.	1.4	12
242	Selective targeting of the αC and DFG-out pocket in p38 MAPK. European Journal of Medicinal Chemistry, 2020, 208, 112721.	2.6	12
243	Discovery of Highly Selective Inhibitors of Calmodulin-Dependent Kinases That Restore Insulin Sensitivity in the Diet-Induced Obesity <i>in Vivo</i> Mouse Model. Journal of Medicinal Chemistry, 2020, 63, 6784-6801.	2.9	12
244	Highly selective inhibitors of protein kinases CLK and HIPK with the furo[3,2-b]pyridine core. European Journal of Medicinal Chemistry, 2021, 215, 113299.	2.6	12
245	Kinase domain autophosphorylation rewires the activity and substrate specificity of CK1 enzymes. Molecular Cell, 2022, 82, 2006-2020.e8.	4.5	12
246	Crystallization and preliminary crystallographic analysis of an amylopullulanase from the hyperthermophilic archaeonPyrococcus woesei. Proteins: Structure, Function and Bioinformatics, 1995, 23, 595-597.	1.5	11
247	Structure of a glutamine donor mimicking inhibitory peptide shaped by the catalytic cleft of microbial transglutaminase. FEBS Journal, 2018, 285, 4684-4694.	2.2	11
248	Illuminating the Dark: Highly Selective Inhibition of Serine/Threonine Kinase 17A with Pyrazolo[1,5- <i>a</i>]pyrimidine-Based Macrocycles. Journal of Medicinal Chemistry, 2022, 65, 7799-7817.	2.9	11
249	Co-crystal structures of the protein kinase haspin with bisubstrate inhibitors. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 339-345.	0.4	10
250	Characterization of a highly selective inhibitor of the Aurora kinases. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4405-4408.	1.0	10
251	Identifying Smallâ€Molecule Binding Sites for Epigenetic Proteins at Domain–Domain Interfaces. ChemMedChem, 2018, 13, 1051-1057.	1.6	10
252	A Novel Biphenyl-based Chemotype of Retinoid X Receptor Ligands Enables Subtype and Heterodimer Preferences. ACS Medicinal Chemistry Letters, 2019, 10, 1346-1352.	1.3	10

#	Article	IF	CITATIONS
253	How to Separate Kinase Inhibition from Undesired Monoamine Oxidase A Inhibition—The Development of the DYRK1A Inhibitor AnnH75 from the Alkaloid Harmine. Molecules, 2020, 25, 5962.	1.7	10
254	A Chemical Toolbox for Labeling and Degrading Engineered Cas Proteins. Jacs Au, 2021, 1, 777-785.	3.6	10
255	Propranolol Activates the Orphan Nuclear Receptor TLX to Counteract Proliferation and Migration of Glioblastoma Cells. Journal of Medicinal Chemistry, 2021, 64, 8727-8738.	2.9	10
256	Structure-Based Design of Dual Partial Peroxisome Proliferator-Activated Receptor γ Agonists/Soluble Epoxide Hydrolase Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 17259-17276.	2.9	10
257	Emerging Target Families: Intractable Targets. Handbook of Experimental Pharmacology, 2015, 232, 43-58.	0.9	9
258	Das Cysteinom der Proteinkinasen als Zielstruktur in der Arzneistoffentwicklung. Angewandte Chemie, 2018, 130, 4456-4470.	1.6	9
259	Co-inhibition of BET proteins and PI3Kα triggers mitochondrial apoptosis in rhabdomyosarcoma cells. Oncogene, 2020, 39, 3837-3852.	2.6	9
260	Addressing a Trapped High-Energy Water: Design and Synthesis of Highly Potent Pyrimidoindole-Based Glycogen Synthase Kinase-3β Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 1283-1301.	2.9	9
261	Structural Aspects of LIMK Regulation and Pharmacology. Cells, 2022, 11, 142.	1.8	9
262	Development of the First Covalent Monopolar Spindle Kinase 1 (MPS1/TTK) Inhibitor. Journal of Medicinal Chemistry, 2022, 65, 3173-3192.	2.9	9
263	Novel, highly potent PROTACs targeting AURORA-A kinase. Current Research in Chemical Biology, 2022, 2, 100032.	1.4	9
264	¹⁹ F NMR isotropic chemical shift for efficient screening of fluorinated fragments which are racemates and/or display multiple conformers. Magnetic Resonance in Chemistry, 2017, 55, 1091-1095.	1.1	8
265	Structure and Inhibitor Binding Characterization of Oncogenic MLLT1 Mutants. ACS Chemical Biology, 2021, 16, 571-578.	1.6	8
266	Conformational plasticity of the ULK3 kinase domain. Biochemical Journal, 2021, 478, 2811-2823.	1.7	8
267	Single tracer-based protocol for broad-spectrum kinase profiling in live cells with NanoBRET. STAR Protocols, 2021, 2, 100822.	0.5	8
268	Design of a Potent TLX Agonist by Rational Fragment Fusion. Journal of Medicinal Chemistry, 2022, 65, 2288-2296.	2.9	8
269	Calcium/calmodulin-dependent protein kinase kinase 2 regulates hepatic fuel metabolism. Molecular Metabolism, 2022, 62, 101513.	3.0	8
270	An Activityâ€Based Probe Targeting Nonâ€Catalytic, Highly Conserved Amino Acid Residues within Bromodomains. Angewandte Chemie, 2019, 131, 1019-1024.	1.6	7

#	Article	IF	CITATIONS
271	Crystal Structure and Inhibitor Identifications Reveal Targeting Opportunity for the Atypical MAPK Kinase ERK3. International Journal of Molecular Sciences, 2020, 21, 7953.	1.8	7
272	Combined Cardioprotective and Adipocyte Browning Effects Promoted by the Eutomer of Dual sEH/PPARÎ ³ Modulator. Journal of Medicinal Chemistry, 2021, 64, 2815-2828.	2.9	7
273	Crystal Structure-Guided Design of Bisubstrate Inhibitors and Photoluminescent Probes for Protein Kinases of the PIM Family. Molecules, 2021, 26, 4353.	1.7	7
274	The Transcriptional Repressor Orphan Nuclear Receptor TLX Is Responsive to Xanthines. ACS Pharmacology and Translational Science, 2021, 4, 1794-1807.	2.5	7
275	DNA topoisomerase inhibition with the HIF inhibitor acriflavine promotes transcription of lncRNAs in endothelial cells. Molecular Therapy - Nucleic Acids, 2022, 27, 1023-1035.	2.3	7
276	Synthesis and biological evaluation of Haspin inhibitors: Kinase inhibitory potency and cellular activity. European Journal of Medicinal Chemistry, 2022, 236, 114369.	2.6	7
277	Discovery of a Potent Dual SLK/STK10 Inhibitor Based on a Maleimide Scaffold. Journal of Medicinal Chemistry, 2021, 64, 13259-13278.	2.9	6
278	A Selective Modulator of Peroxisome Proliferator-Activated Receptor Î ³ with an Unprecedented Binding Mode. Journal of Medicinal Chemistry, 2020, 63, 4555-4561.	2.9	5
279	Effects of epigenetic pathway inhibitors on corticotroph tumour AtT20 cells. Endocrine-Related Cancer, 2020, 27, 163-174.	1.6	5
280	Discovery of a Potent and Highly Isoform-Selective Inhibitor of the Neglected Ribosomal Protein S6 Kinase Beta 2 (S6K2). Cancers, 2021, 13, 5133.	1.7	5
281	Development of novel urea-based ATM kinase inhibitors with subnanomolar cellular potency and high kinome selectivity. European Journal of Medicinal Chemistry, 2022, 235, 114234.	2.6	5
282	Function, Structure and Topology of Protein Kinases. Topics in Medicinal Chemistry, 2020, , 1-24.	0.4	4
283	Integrated analysis of Shank1 PDZ interactions with C-terminal and internal binding motifs. Current Research in Structural Biology, 2021, 3, 41-50.	1.1	4
284	Development of a Selective Dual Discoidin Domain Receptor (DDR)/p38 Kinase Chemical Probe. Journal of Medicinal Chemistry, 2021, 64, 13451-13474.	2.9	4
285	Pharmacokinetic Optimization of Small Molecule Janus Kinase 3 Inhibitors to Target Immune Cells. ACS Pharmacology and Translational Science, 2022, 5, 573-602.	2.5	4
286	High-Throughput Purification of Protein Kinases from Escherichia coli and Insect Cells. Methods in Molecular Biology, 2019, 2025, 191-202.	0.4	3
287	Comparative structural analyses and nucleotide-binding characterization of the four KH domains of FUBP1. Scientific Reports, 2020, 10, 13459.	1.6	3
288	7-(2-Anilinopyrimidin-4-yl)-1-benzazepin-2-ones Designed by a "Cut and Glue―Strategy Are Dual Aurora A/VEGF-R Kinase Inhibitors. Molecules, 2021, 26, 1611.	1.7	3

#	Article	IF	CITATIONS
289	C81â€evoked inhibition of the TNFR1â€NFκB pathway during inflammatory processes for stabilization of the impaired vascular endothelial barrier for leukocytes. FASEB Journal, 2021, 35, e21656.	0.2	3
290	Design and Development of a Chemical Probe for Pseudokinase Ca2+/calmodulin-Dependent Ser/Thr Kinase. Journal of Medicinal Chemistry, 2021, 64, 14358-14376.	2.9	3
291	Aurora Kinase A Is Involved in Controlling the Localization of Aquaporin-2 in Renal Principal Cells. International Journal of Molecular Sciences, 2022, 23, 763.	1.8	3
292	Designed Ankyrin Repeat Proteins as a tool box for analyzing p63. Cell Death and Differentiation, 2022, 29, 2445-2458.	5.0	3
293	Identification of CLK1 Inhibitors by a Fragment–linking Based Virtual Screening. Molecular Informatics, 2017, 36, 1600123.	1.4	2
294	Controlling the Covalent Reactivity of a Kinase Inhibitor with Light. Angewandte Chemie, 2021, 133, 20340-20345.	1.6	2
295	Decoding the Papain Inhibitor from <i>Streptomyces mobaraensis</i> as Being Hydroxylated Chymostatin Derivatives: Purification, Structure Analysis, and Putative Biosynthetic Pathway. Journal of Natural Products, 2020, 83, 2983-2995.	1.5	2
296	Selective BH3 mimetics synergize with BET inhibition to induce mitochondrial apoptosis in rhabdomyosarcoma cells. Neoplasia, 2022, 24, 109-119.	2.3	2
297	Cascade Synthesis of Kinase-Privileged 3-Aminoindazoles via Intramolecular N–N Bond Formation. Journal of Organic Chemistry, 2022, 87, 3856-3862.	1.7	2
298	Enabling pseudokinases as potential drug targets. Methods in Enzymology, 2022, 667, 663-683.	0.4	2
299	Preliminary crystallographic analysis of an extremely thermostable glutamate dehydrogenase from the archaeonPyrococcus woesei. Acta Crystallographica Section D: Biological Crystallography, 1995, 51, 395-398.	2.5	1
300	Halogenaromatische Ï€â€Wechselwirkungen modulieren die Verweilzeit von Inhibitoren. Angewandte Chemie, 2018, 130, 7338-7343.	1.6	1
301	A Pseudo-Kinase Double Act. Structure, 2018, 26, 527-528.	1.6	1
302	Aminothiazolones as potent, selective and cell active inhibitors of the PIM kinase family. Bioorganic and Medicinal Chemistry, 2020, 28, 115724.	1.4	1
303	Targeting Aberrant Self-Renewal of Leukemic Cells with a Novel CBP/p300 Bromodomain Inhibitor. Blood, 2014, 124, 3750-3750.	0.6	1
304	Closantel is an allosteric inhibitor of human Taspase1. IScience, 2021, 24, 103524.	1.9	1
305	Resistance to kinase inhibition through shortened target engagement. Molecular and Cellular Oncology, 2022, 9, 2029999.	0.3	1
306	Kinase Domain Autophosphorylation Rewires the Activity and Substrate Specificity of CK1 Enzymes. FASEB Journal, 2022, 36, .	0.2	1

#	Article	IF	CITATIONS
307	Testis specific gene expression drives disease progression and Rituximab resistance in lymphoma. EMBO Molecular Medicine, 2013, 5, 1149-1150.	3.3	0
308	Innenrücktitelbild: Das Cysteinom der Proteinkinasen als Zielstruktur in der Arzneistoffentwicklung (Angew. Chem. 16/2018). Angewandte Chemie, 2018, 130, 4517-4517.	1.6	0
309	Backbone resonance assignments of the catalytic and regulatory domains of Ca2+/calmodulin-dependent protein kinase 1D. Biomolecular NMR Assignments, 2020, 14, 221-225.	0.4	0
310	Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. FASEB Journal, 2021, 35, .	0.2	0
311	Nanopore Enzymology to Study Protein Kinases and Their Inhibition by Small Molecules. Methods in Molecular Biology, 2021, 2186, 95-114.	0.4	0
312	IPP/CNRS-A017: A chemical probe for human dihydroorotate dehydrogenase (hDHODH). Current Research in Chemical Biology, 2022, 2, 100034.	1.4	0