
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4764031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Salacinol, potent antidiabetic principle with unique thiosugar sulfonium sulfate structure from the Ayurvedic traditional medicine Salacia reticulata in Sri Lanka and India. Tetrahedron Letters, 1997, 38, 8367-8370.	1.4	256
2	Absolute Stereostructure of Potent α-Glucosidase Inhibitor, Salacinol, with Unique Thiosugar Sulfonium Sulfate Inner Salt Structure from Salacia reticulata. Bioorganic and Medicinal Chemistry, 2002, 10, 1547-1554.	3.0	206
3	Phenylethanoid oligoglycosides and acylated oligosugars with vasorelaxant activity from Cistanche tubulosa. Bioorganic and Medicinal Chemistry, 2006, 14, 7468-7475.	3.0	89
4	Acylated phenylethanoid oligoglycosides with hepatoprotective activity from the desert plant Cistanche tubulosa1. Bioorganic and Medicinal Chemistry, 2010, 18, 1882-1890.	3.0	87
5	Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorganic and Medicinal Chemistry, 2013, 21, 779-787.	3.0	86
6	Salaprionol and Ponkoranol with Thiosugar Sulfonium Sulfate Structure from Salacia prinoides and a-Glucosidase Inhibitory Activity of Ponkoranol and Kotalanol Desulfate. Heterocycles, 2008, 75, 1397.	0.7	74
7	Isolation, structure identification and SAR studies on thiosugar sulfonium salts, neosalaprinol and neoponkoranol, as potent α-glucosidase inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 2015-2022.	3.0	68
8	Biological evaluation of de-O-sulfonated analogs of salacinol, the role of sulfate anion in the side chain on the α-glucosidase inhibitory activity. Bioorganic and Medicinal Chemistry, 2007, 15, 3926-3937.	3.0	66
9	Bioactive Saponins and Glycosides. XXVIII. New Triterpene Saponins, Foliatheasaponins I, II, III, IV, and V, from Tencha (the Leaves of <i>Camellia sinensis</i>). Chemical and Pharmaceutical Bulletin, 2007, 55, 293-298.	1.3	61
10	On the structure of the bioactive constituent from ayurvedic medicine Salacia reticulata: revision of the literature. Tetrahedron Letters, 2008, 49, 7315-7317.	1.4	61
11	Oleanane-type triterpene oligoglycosides with pancreatic lipase inhibitory activity from the pericarps of Sapindus rarak. Phytochemistry, 2009, 70, 1166-1172.	2.9	60
12	Absolute stereostructures of novel norcadinane- and trinoreudesmane-type sesquiterpenes with nitric oxide production inhibitory activity from Alpinia oxyphylla. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2217-2220.	2.2	59
13	Monoterpene Constituents from Cistanche tubulosa-Chemical Structures of Kankanosides A-E and Kankanol Chemical and Pharmaceutical Bulletin, 2006, 54, 669-675.	1.3	58
14	Acylated phenylethanoid glycosides, echinacoside and acteoside from Cistanche tubulosa, improve glucose tolerance in mice. Journal of Natural Medicines, 2014, 68, 561-566.	2.3	58
15	Synthesis and biological evaluation of deoxy salacinols, the role of polar substituents in the side chain on the α-glucosidase inhibitory activity. Bioorganic and Medicinal Chemistry, 2006, 14, 500-509.	3.0	57
16	Hepatoprotective triterpenes from traditional Tibetan medicine Potentilla anserina. Phytochemistry, 2014, 102, 169-181.	2.9	57
17	Inhibitors of Nitric Oxide Production from the Rhizomes of Alpinia galanga: Structures of New 8-9' Linked Neolignans and Sesquineolignan. Chemical and Pharmaceutical Bulletin, 2005, 53, 625-630.	1.3	55
18	Bioactive Constituents from Chinese Natural Medicines. XXIII. Absolute Structures of New Megastigmane Glycosides, Sedumosides A4, A5, A6, H, and I, and Hepatoprotective Megastigmanes from Sedum sarmentosum. Chemical and Pharmaceutical Bulletin, 2007, 55, 1185-1191.	1.3	52

#	Article	IF	CITATIONS
19	Docking and SAR studies of salacinol derivatives as α-glucosidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4420-4423.	2.2	46
20	Facile synthesis of de-O-sulfated salacinols: Revision of the structure of neosalacinol, a potent α-glucosidase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2195-2198.	2.2	45
21	Antidiabetogenic oligostilbenoids and 3-ethyl-4-phenyl-3,4-dihydroisocoumarins from the bark of Shorea roxburghii. Bioorganic and Medicinal Chemistry, 2012, 20, 832-840.	3.0	44
22	Quantitative analysis of neosalacinol and neokotalanol, another two potent α-glucosidase inhibitors from Salacia species, by LC-MS with ion pair chromatography. Journal of Natural Medicines, 2011, 65, 142-148.	2.3	43
23	Perennisosides Iâ^'VII, Acylated Triterpene Saponins with Antihyperlipidemic Activities from the Flowers of <i>Bellis perennis</i> . Journal of Natural Products, 2008, 71, 828-835.	3.0	42
24	Synthesis and elucidation of absolute stereochemistry of salaprinol, another thiosugar sulfonium sulfate from the ayurvedic traditional medicine Salacia prinoides. Tetrahedron, 2008, 64, 10080-10086.	1.9	41
25	Synthesis of a Nitrogen Analogue of Salacinol and Its .ALPHAGlucosidase Inhibitory Activity Chemical and Pharmaceutical Bulletin, 2001, 49, 1503-1505.	1.3	40
26	Salacinol and Related Analogs: New Leads for Type 2 Diabetes Therapeutic Candidates from the Thai Traditional Natural Medicine Salacia chinensis. Nutrients, 2015, 7, 1480-1493.	4.1	40
27	Quantitative determination of potent α-glucosidase inhibitors, salacinol and kotalanol, in Salacia species using liquid chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52, 770-773.	2.8	39
28	Andirolides H–P from the flower of andiroba (Carapa guianensis, Meliaceae). Tetrahedron, 2012, 68, 3669-3677.	1.9	39
29	Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrochalcone glycosides from flowers of Helichrysum arenarium. Journal of Natural Medicines, 2015, 69, 494-506.	2.3	39
30	A Review of Biologically Active Natural Products from a Desert Plant <i>Cistanche tubulosa</i> . Chemical and Pharmaceutical Bulletin, 2019, 67, 675-689.	1.3	39
31	Medicinal Flowers. XXVII. New Flavanone and Chalcone Glycosides, Arenariumosides I, II, III, and IV, and Tumor Necrosis FactorALPHA. Inhibitors from Everlasting, Flowers of Helichrysum arenarium. Chemical and Pharmaceutical Bulletin, 2009, 57, 361-367.	1.3	37
32	Andirolides Q–V from the flower of andiroba (Carapa guianensis, Meliaceae). Fìtoterapìâ, 2013, 90, 20-29.	2.2	37
33	Quantitative Determination of Alkaloids in Lotus Flower (Flower Buds of Nelumbo nucifera) and Their Melanogenesis Inhibitory Activity. Molecules, 2016, 21, 930.	3.8	37
34	Bioactive Constituents from Chinese Natural Medicines. XXV. New Flavonol Bisdesmosides, Sarmenosides I, II, III, and IV, with Hepatoprotective Activity from Sedum sarmentosum (Crassulaceae). Heterocycles, 2007, 71, 1565.	0.7	37
35	Anti-hyperlipidemic constituents from the bark of Shorea roxburghii. Journal of Natural Medicines, 2012, 66, 516-524.	2.3	36
36	Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model. Toxicology and Applied Pharmacology, 2016, 306, 105-112.	2.8	36

#	Article	IF	CITATIONS
37	Biakamides A–D, Unique Polyketides from a Marine Sponge, Act as Selective Growth Inhibitors of Tumor Cells Adapted to Nutrient Starvation. Journal of Organic Chemistry, 2017, 82, 1705-1718.	3.2	35
38	Medicinal Flowers. XXIII. New Taraxastane-Type Triterpene, Punicanolic Acid, with Tumor Necrosis FactorALPHA. Inhibitory Activity from the Flowers of Punica granatum. Chemical and Pharmaceutical Bulletin, 2008, 56, 1628-1631.	1.3	34
39	Medicinal Flowers. XXX. Eight New Glycosides, Everlastosides F-M, from the Flowers of Helichrysum arenarium. Chemical and Pharmaceutical Bulletin, 2009, 57, 853-859.	1.3	33
40	Flavonol glycosides with lipid accumulation inhibitory activity and simultaneous quantitative analysis of 15 polyphenols and caffeine in the flower buds of Camellia sinensis from different regions by LCMS. Food Chemistry, 2013, 140, 353-360.	8.2	32
41	Simultaneous quantitative analysis of 12 methoxyflavones with melanogenesis inhibitory activity from the rhizomes of Kaempferia parviflora. Journal of Natural Medicines, 2016, 70, 179-189.	2.3	32
42	Absolute stereostructure of Andirolides A–G from the flower of Carapa guianensis (Meliaceae). Tetrahedron, 2011, 67, 782-792.	1.9	30
43	Structures of Two New Phenolic Glycosides, Kaempferiaosides A and B, and Hepatoprotective Constituents from the Rhizomes of <i>Kaempferia parviflora</i> . Chemical and Pharmaceutical Bulletin, 2012, 60, 62-69.	1.3	30
44	New biofunctional effects of the flower buds of Camellia sinensis and its bioactive acylated oleanane-type triterpene oligoglycosides. Journal of Natural Medicines, 2016, 70, 689-701.	2.3	30
45	Structures of Acetylated Oleanane-Type Triterpene Saponins, Rarasaponins IV, V, and VI, and Anti-hyperlipidemic Constituents from the Pericarps of Sapindus rarak. Chemical and Pharmaceutical Bulletin, 2009, 57, 198-203.	1.3	29
46	Iridoid and Acyclic Monoterpene Glycosides, Kankanosides L, M, N, O, and P from Cistanche tubulosa. Chemical and Pharmaceutical Bulletin, 2010, 58, 1403-1407.	1.3	29
47	Characteristic alkaline catalyzed degradation of kotalanol, a potent α-glucosidase inhibitor isolated from Ayurvedic traditional medicine Salacia reticulata, leading to anhydroheptitols: another structural proof. Tetrahedron, 2010, 66, 3717-3722.	1.9	29
48	In silico design, synthesis and evaluation of 3′-O-benzylated analogs of salacinol, a potent α-glucosidase inhibitor isolated from an Ayurvedic traditional medicine "Salacia― Chemical Communications, 2012, 48, 8646.	4.1	29
49	Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase. Chemico-Biological Interactions, 2016, 251, 26-33.	4.0	29
50	Phenylethanoid and phenylpropanoid glycosides with melanogenesis inhibitory activity from the flowers of Narcissus tazetta var. chinensis. Journal of Natural Medicines, 2016, 70, 89-101.	2.3	29
51	Suppressive effects of coumarins from Mammea siamensis on inducible nitric oxide synthase expression in RAW264.7 cells. Bioorganic and Medicinal Chemistry, 2012, 20, 4968-4977.	3.0	28
52	Guianolides A and B, New Carbon Skeletal Limonoids from the Seeds of <i>Carapa guianensis</i> . Organic Letters, 2013, 15, 3018-3021.	4.6	28
53	Biological evaluation of 3′-O-alkylated analogs of salacinol, the role of hydrophobic alkyl group at 3′ position in the side chain on the α-glucosidase inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3159-3162.	2.2	27
54	Pseudoguaiane-type sesquiterpenes and inhibitors on nitric oxide production from Dichrocephala integrifolia. Tetrahedron, 2006, 62, 6435-6442.	1.9	26

#	Article	IF	CITATIONS
55	Novel megastigmanes with lipid accumulation inhibitory and lipid metabolism-promoting activities in HepG2 cells from Sedum sarmentosum. Tetrahedron, 2009, 65, 4142-4148.	1.9	26
56	Medicinal Flowers. Part 29. Acylated Oleananeâ€Type Triterpene Bisdesmosides: Perennisaponins G, H, I, J, K, L, and M with Pancreatic Lipase Inhibitory Activity from the Flowers of <i>Bellis perennis</i> . Helvetica Chimica Acta, 2010, 93, 573-586.	1.6	26
57	Carapanolides A and B: unusual 9,10-seco-mexicanolides having a 2R,9S-oxygen bridge from the seeds of Carapa guianensis. Tetrahedron Letters, 2012, 53, 6685-6688.	1.4	26
58	Carapanolides C–I from the seeds of andiroba (Carapa guianensis, Meliaceae). Fìtoterapìâ, 2014, 96, 56-64.	2.2	26
59	Melanogenesis inhibitory activity of a 7-O-9′-linked neolignan from Alpinia galanga fruit. Bioorganic and Medicinal Chemistry, 2016, 24, 6215-6224.	3.0	26
60	Carapanolides J–L from the Seeds of Carapa guianensis (Andiroba) and Their Effects on LPS-Activated NO Production. Molecules, 2014, 19, 17130-17140.	3.8	25
61	Quantitative Determination of Stilbenoids and Dihydroisocoumarins in Shorea roxburghii and Evaluation of Their Hepatoprotective Activity. International Journal of Molecular Sciences, 2017, 18, 451.	4.1	25
62	Bioactive Constituents from Chinese Natural Medicines. XXXVI. Four New Acylated Phenylethanoid Oligoglycosides, Kankanosides J1, J2, K1, and K2, from Stems of Cistanche tubulosa. Chemical and Pharmaceutical Bulletin, 2010, 58, 575-578.	1.3	24
63	Chemical Structures and Hepatoprotective Effects of Constituents from the Leaves of Salacia chinensis. Chemical and Pharmaceutical Bulletin, 2011, 59, 1020-1028.	1.3	24
64	Dimeric pyrrolidinoindoline-type alkaloids with melanogenesis inhibitory activity in flower buds of Chimonanthus praecox. Journal of Natural Medicines, 2014, 68, 539-549.	2.3	24
65	Carapanolides M–S from seeds of andiroba (Carapa guianensis, Meliaceae) and triglyceride metabolism-promoting activity in high glucose-pretreated HepG2 cells. Tetrahedron, 2015, 71, 2753-2760.	1.9	24
66	Quantitative analysis of acylated oleanane-type triterpene saponins, chakasaponins I–III and floratheasaponins A–F, in the flower buds of Camellia sinensis from different regional origins. Journal of Natural Medicines, 2012, 66, 608-613.	2.3	23
67	Chemical Structures and Hepatoprotective Effects of Constituents from <i>Cassia auriculata</i> Leaves. Chemical and Pharmaceutical Bulletin, 2014, 62, 1026-1031.	1.3	23
68	Andirolides W–Y from the flower oil of andiroba (Carapa guianensis, Meliaceae). Fìtoterapìâ, 2015, 100, 81-87.	2.2	23
69	Hepatoprotective Limonoids from Andiroba (Carapa guianensis). International Journal of Molecular Sciences, 2016, 17, 591.	4.1	23
70	Synthesis of Azepines via a [6 + 1] Annulation of Ynenitriles with Reformatsky Reagents. Journal of Organic Chemistry, 2015, 80, 9480-9494.	3.2	22
71	Medicinal Flowers. XXXII. Structures of Oleanane-Type Triterpene Saponins, Perennisosides VIII, IX, X, XI, and XII, from the Flowers of Bellis perennis. Chemical and Pharmaceutical Bulletin, 2011, 59, 889-895.	1.3	21
72	Role of the side chain stereochemistry in the α-glucosidase inhibitory activity of kotalanol, a potent natural α-glucosidase inhibitor. Bioorganic and Medicinal Chemistry, 2011, 19, 2252-2262.	3.0	21

#	Article	IF	CITATIONS
73	Acremomannolipin A, the potential calcium signal modulator with a characteristic glycolipid structure from the filamentous fungus Acremonium strictum. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6735-6739.	2.2	21
74	Evaluation of <i>Salacia</i> Species as Anti-diabetic Natural Resources Based on Quantitative Analysis of Eight Sulphonium Constituents: A New Class of α-Glucosidase Inhibitors. Phytochemical Analysis, 2014, 25, 544-550.	2.4	21
75	Carapanolides T–X from Carapa guianensis (Andiroba) Seeds. Molecules, 2015, 20, 20955-20966.	3.8	21
76	Research Progress of Synthesis and Structure-activity Relationship Studies on Sulfonium-type α-glucosidase Inhibitors Isolated from Salacia Genus Plants. Mini-Reviews in Organic Chemistry, 2013, 10, 141-159.	1.3	21
77	Medicinal Flowers. XXVIII. Structures of Five New Glycosides, Everlastosides A, B, C, D, and E, from the Flowers of Helichrysum arenarium. Heterocycles, 2009, 78, 1235.	0.7	21
78	Oleanane-type triterpene saponins with collagen synthesis-promoting activity from the flowers of Bellis perennis. Phytochemistry, 2015, 116, 203-212.	2.9	20
79	Ellagic acid glycosides with hepatoprotective activity from traditional Tibetan medicine Potentilla anserina. Journal of Natural Medicines, 2018, 72, 317-325.	2.3	20
80	Aromatase Inhibitory Activity of Geranylated Coumarins, Mammeasins C and D, Isolated from the Flowers of <i>Mammea siamensis</i> . Chemical and Pharmaceutical Bulletin, 2016, 64, 880-885.	1.3	19
81	Identification of <scp>ACA</scp> â€28, a 1′â€acetoxychavicol acetate analogue compound, as a novel modulator of <scp>ERK MAPK</scp> signaling, which preferentially kills human melanoma cells. Genes To Cells, 2017, 22, 608-618.	1.2	19
82	Labdane-Type Diterpenes, Galangalditerpenes A–C, with Melanogenesis Inhibitory Activity from the Fruit of Alpinia galanga. Molecules, 2017, 22, 2279.	3.8	19
83	Geranylated Coumarins From Thai Medicinal Plant Mammea siamensis With Testosterone 5α-Reductase Inhibitory Activity. Frontiers in Chemistry, 2020, 8, 199.	3.6	18
84	Promoting the effect of chemical constituents from the flowers of Poacynum hendersonii on adipogenesis in 3T3-L1 cells. Journal of Natural Medicines, 2012, 66, 39-48.	2.3	17
85	Diastereoselective Synthesis of Salacinol-Type α-Glucosidase Inhibitors. Journal of Organic Chemistry, 2018, 83, 185-193.	3.2	17
86	Acetoxybenzhydrols as highly active and stable analogues of 1′S-1′-acetoxychavicol, a potent antiallergic principal from Alpinia galanga. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2944-2946.	2.2	16
87	Flavonol glycosides with lipid accumulation inhibitory activity from Sedum sarmentosum. Phytochemistry Letters, 2012, 5, 53-58.	1.2	16
88	Design, synthesis and biological evaluation of 3′-benzylated analogs of 3′-epi-neoponkoranol as potent α-glucosidase inhibitors. European Journal of Medicinal Chemistry, 2016, 110, 224-236.	5.5	16
89	A review of antidiabetic active thiosugar sulfoniums, salacinol and neokotalanol, from plants of the genus Salacia. Journal of Natural Medicines, 2021, 75, 449-466.	2.3	16
90	New flav-3-en-3-ol glycosides, kaempferiaosides C and D, and acetophenone glycosides, kaempferiaosides E and F, from the rhizomes of KaempferiaÂparviflora. Journal of Natural Medicines, 2012, 66, 486-492.	2.3	15

#	Article	IF	CITATIONS
91	Construction of 3,6-Anhydrohexosides via Intramolecular Cyclization of Triflates and Its Application to the Synthesis of Natural Product Isolated from Leaves of <i>Sauropus rostratus</i> . Organic Letters, 2014, 16, 5004-5007.	4.6	15
92	Major constituents of Cistanche tubulosa , echinacoside and acteoside, inhibit sodium-dependent glucose cotransporter 1-mediated glucose uptake by intestinal epithelial cells. Journal of Functional Foods, 2017, 39, 91-95.	3.4	15
93	The first total synthesis of acremomannolipin A, the potential Ca2+ signal modulator with a characteristic glycolipid structure, isolated from the filamentous fungus Acremonium strictum. Tetrahedron Letters, 2013, 54, 451-453.	1.4	14
94	The Antiproliferative Effect of Chakasaponins I and II, Floratheasaponin A, and Epigallocatechin 3-O-Gallate Isolated from Camellia sinensis on Human Digestive Tract Carcinoma Cell Lines. International Journal of Molecular Sciences, 2016, 17, 1979.	4.1	14
95	Inhibitory Effects of Acylated Acyclic Sesquiterpene Oligoglycosides from the Pericarps of Sapindus rarak on Tumor Necrosis FactorALPHAInduced Cytotoxicity. Chemical and Pharmaceutical Bulletin, 2010, 58, 1276-1280.	1.3	13
96	Synthetic study on neoponkoranol and its side chain epimer as potent α-glucosidase inhibitors, optimization of protecting group. Tetrahedron Letters, 2013, 54, 6333-6336.	1.4	13
97	Total Synthesis of 4,5-Didehydroguadiscine: A Potent Melanogenesis Inhibitor from the Brazilian Medicinal Herb, <i>Hornschuchia obliqua</i> . Journal of Natural Products, 2015, 78, 1536-1542.	3.0	13
98	Salacia chinensis stem extract and its thiosugar sulfonium constituent, neokotalanol, improves HbA1c levels in ob/ob mice. Journal of Natural Medicines, 2019, 73, 584-588.	2.3	13
99	Collagen synthesis-promoting and collagenase inhibitory activities of constituents isolated from the rhizomes of Picrorhiza kurroa Royle ex Benth. Fìtoterapìâ, 2020, 143, 104584.	2.2	13
100	Role of the side chain stereochemistry in the α-glucosidase inhibitory activity of kotalanol, a potent natural α-glucosidase inhibitor. Part 2. Bioorganic and Medicinal Chemistry, 2012, 20, 6321-6334.	3.0	12
101	Hydrophobic substituents increase the potency of salacinol, a potent α-glucosidase inhibitor from Ayurvedic traditional medicine â€~Salacia'. Bioorganic and Medicinal Chemistry, 2016, 24, 3705-3715.	3.0	12
102	Practical Route to Neokotalanol and Its Natural Analogues: Sulfonium Sugars with Antidiabetic Activities. Angewandte Chemie - International Edition, 2019, 58, 6400-6404.	13.8	12
103	Acylated oleanane-type triterpene saponins from the flowers of Bellis perennis show anti-proliferative activities against human digestive tract carcinoma cell lines. Journal of Natural Medicines, 2016, 70, 435-451.	2.3	11
104	Total Synthesis of γ-Alkylidenebutenolides, Potent Melanogenesis Inhibitors from Thai Medicinal Plant <i>Melodorum fruticosum</i> . Journal of Organic Chemistry, 2018, 83, 8250-8264.	3.2	11
105	Structural Requirements of Alkylglyceryl-l-Ascorbic Acid Derivatives for Melanogenesis Inhibitory Activity. International Journal of Molecular Sciences, 2018, 19, 1144.	4.1	11
106	Stereoselective total synthesis of acremomannolipin A and its anomer, the potent calcium signal modulators with a novel glycolipid structure: role of the stereochemistry at the anomeric center on the activity. Tetrahedron, 2013, 69, 9917-9930.	1.9	10
107	Two new aromatic glycosides, elengiosides A and B, from the flowers of Mimusops elengi. Journal of Natural Medicines, 2018, 72, 542-550.	2.3	10
108	Syntheses and Evaluation as Glycosidase Inhibitor of 1,5-Dideoxy-1,5-imino-D-glucitol Analogs of Salacinol, a Potent α-Glucosidase Inhibitor Isolated from Ayurvedic Medicine, Salacia reticulata. Heterocycles, 2009, 79, 1093.	0.7	10

#	Article	IF	CITATIONS
109	Structure–activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 2: Role of the alditol side chain stereochemistry. Bioorganic and Medicinal Chemistry, 2014, 22, 945-959.	3.0	9
110	Highly Diastereoselective Route to α-Glucosidase Inhibitors, Neosalacinol and Neoponkoranol. Journal of Organic Chemistry, 2016, 81, 3407-3415.	3.2	9
111	Design, Synthesis and Biological Evaluation of Nitrate Derivatives of Sauropunol A and B as Potent Vasodilatory Agents. Molecules, 2019, 24, 583.	3.8	9
112	Total synthesis of neokotalanol, a potent α-glucosidase inhibitor isolated from Salacia reticulata. Chinese Journal of Natural Medicines, 2013, 11, 676-683.	1.3	7
113	Quantitative Analysis of Catechin, Flavonoid, and Saponin Constituents in "Tea Flowerâ€, the Flower Buds of <i>Camellia sinensis</i> , from Different Regions in Taiwan. Natural Product Communications, 2013, 8, 1934578X1300801.	0.5	7
114	Total synthesis, structural elucidation and anti-inflammatory activity evaluation of 2-deoxy-3,6-anhydro hexofuranoside derivatives isolated from Sauropus rostratus. Organic and Biomolecular Chemistry, 2016, 14, 10906-10913.	2.8	7
115	Guianolactones A and B, Two Rearranged Pentacyclic Limonoids from the Seeds of <i>Carapa guianensis</i> . Chemistry - an Asian Journal, 2017, 12, 3000-3004.	3.3	7
116	The first isolation and characterization of sulfonylbuta-1,3-diynes. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1413-1416.	1.3	6
117	First Total Syntheses of Amorfrutin C and pseudoâ€Amorfrutin A. European Journal of Organic Chemistry, 2018, 2018, 1443-1448.	2.4	6
118	Quantitative Determination of Principal Aporphine and Benzylisoquinoline Alkaloids Due to Blooming State in Lotus Flower (Flower Buds of Nelumbo nucifera) and Their Hyaluronidase Inhibitory Activity. Natural Product Communications, 2019, 14, 1934578X1985783.	0.5	6
119	Anti-proliferative activities of coumarins from the Thai medicinal plant Mammea siamensis (Miq.) T. Anders. against human digestive tract carcinoma cell lines. Fìtoterapìâ, 2021, 148, 104780.	2.2	6
120	Another mode of heterocyclization of an enantiopure C2-symmetric bis-epoxide leading to the symmetric dialkyl sulfide. Tetrahedron, 2010, 66, 7487-7491.	1.9	5
121	Glucose Tolerance-Improving Activity of Helichrysoside in Mice and Its Structural Requirements for Promoting Glucose and Lipid Metabolism. International Journal of Molecular Sciences, 2019, 20, 6322.	4.1	5
122	Dose-Dependent Suppression of Postprandial Hyperglycemia and Improvement of Blood Glucose Parameters by <i>Salacia chinensis</i> Extract: Two Randomized, Double-Blind, Placebo-Controlled Studies. Journal of Medicinal Food, 2021, 24, 10-17.	1.5	5
123	Quantitative analysis of catechin, flavonoid, and saponin constituents in "tea flower", the flower buds of Camellia sinensis, from different regions in Taiwan. Natural Product Communications, 2013, 8, 1553-7.	0.5	5
124	Practical Synthesis of Neoponkoranol and its Related Sulfonium Salt, an Optimised Protocol using Isopropylidene as an Effective Protecting Group. Journal of Chemical Research, 2013, 37, 715-719.	1.3	4
125	Facile Synthesis of Neokotalanol, a Potent α-glycosidase Inhibitor Isolated from the Ayurvedic Traditional Medicine " <i>Salacia</i> ― ACS Omega, 2019, 4, 7533-7542.	3.5	4
126	Ursane-type triterpene oligoglycosides with anti-hepatosteatosis and anti-hyperlipidemic activity from the leaves of Ilex paraguariensis A. StHil Journal of Natural Medicines, 2022, 76, 654-669.	2.3	4

#	Article	IF	CITATIONS
127	Structure–activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 3: Role of the length of alditol side chain. Bioorganic and Medicinal Chemistry, 2015, 23, 3761-3773.	3.0	3
128	First total synthesis of cyclic pentadepsipeptides Hikiamides A–C. Tetrahedron Letters, 2018, 59, 2876-2879.	1.4	3
129	Unprecedented nucleophile-promoted 1,7-S or Se shift reactions under Pummerer reaction conditions of 4-alkenyl-3-sulfinylmethylpyrroles. Beilstein Journal of Organic Chemistry, 2018, 14, 2722-2729.	2.2	3
130	Ligand compatibility of salacinol-type α-glucosidase inhibitors toward the GH31 family. RSC Advances, 2021, 11, 3221-3225.	3.6	3
131	Indole Clycosides from <i>Calanthe discolor</i> with Proliferative Activity on Human Hair Follicle Dermal Papilla Cells. Chemical and Pharmaceutical Bulletin, 2021, 69, 464-471.	1.3	3
132	Quantitative Determination of Principal Alkaloid and Flavonoid Constituents in Wintersweet, the Flower Buds of Chimonanthus praecox. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	2
133	Practical Route to Neokotalanol and Its Natural Analogues: Sulfonium Sugars with Antidiabetic Activities. Angewandte Chemie, 2019, 131, 6466-6470.	2.0	1
134	Structure–activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 4: Role of acyl side chains on d-mannose. European Journal of Madicinal Chamistry, 2016, 121, 250,271	5.5	0

Medicinal Chemistry, 2016, 121, 250-271.