
Megan Sykes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4763971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human stem cell-derived thymic epithelial cells enhance human T-cell development in a xenogeneic thymus. Journal of Allergy and Clinical Immunology, 2022, 149, 1755-1771.	1.5	13
2	Modeling human T1D-associated autoimmune processes. Molecular Metabolism, 2022, 56, 101417.	3.0	13
3	Defects in Long-Term APC Repopulation Ability of Adult Human Bone Marrow Hematopoietic Stem Cells (HSCs) Compared with Fetal Liver HSCs. Journal of Immunology, 2022, 208, 1652-1663.	0.4	3
4	The Women of FOCIS: Promoting Equality and Inclusiveness in a Professional Federation of Clinical Immunology Societies. Frontiers in Immunology, 2022, 13, 816535.	2.2	0
5	Emerging Concepts of Tissue-resident Memory T Cells in Transplantation. Transplantation, 2022, 106, 1132-1142.	0.5	15
6	T1D patient-derived hematopoietic stem cells are programmed to generate Tph, Tfh, and autoimmunity-associated B cell subsets in human immune system mice. Clinical Immunology, 2022, 240, 109048.	1.4	6
7	The Fourth International Workshop on Clinical Transplant Tolerance. American Journal of Transplantation, 2021, 21, 21-31.	2.6	28
8	T cell repertoire analysis suggests a prominent bystander response in human cardiac allograft vasculopathy. American Journal of Transplantation, 2021, 21, 1465-1476.	2.6	10
9	Antibody reactivity with new antigens revealed in multiâ€ŧransgenic triple knockout pigs may cause early loss of pig kidneys in baboons. Xenotransplantation, 2021, 28, e12642.	1.6	12
10	Lymphohematopoietic graft-versus-host responses promote mixed chimerism in patients receiving intestinal transplantation. Journal of Clinical Investigation, 2021, 131, .	3.9	31
11	Mixed xenogeneic porcine chimerism tolerizes human antiâ€pig natural antibodyâ€producing cells in a humanized mouse model. Xenotransplantation, 2021, 28, e12691.	1.6	4
12	Role of the thymus in spontaneous development of a multi-organ autoimmune disease in human immune system mice. Journal of Autoimmunity, 2021, 119, 102612.	3.0	4
13	Expression of human CD47 in pig glomeruli prevents proteinuria and prolongs graft survival following pigâ€toâ€baboon xenotransplantation. Xenotransplantation, 2021, 28, .	1.6	20
14	Integrated analysis toolset for defining and tracking alloreactive T-cell clones after human solid organ and hematopoietic stem cell transplantation. Software Impacts, 2021, 10, 100142.	0.8	11
15	Prospective Tracking of Donor-Reactive T-Cell Clones in the Circulation and Rejecting Human Kidney Allografts. Frontiers in Immunology, 2021, 12, 750005.	2.2	20
16	High Throughput Human T Cell Receptor Sequencing: A New Window Into Repertoire Establishment and Alloreactivity. Frontiers in Immunology, 2021, 12, 777756.	2.2	7
17	Chimerism-Based Tolerance to Kidney Allografts in Humans: Novel Insights and Future Perspectives. Frontiers in Immunology, 2021, 12, 791725.	2.2	9
18	Pharmacokinetic and pharmacodynamic study of a clinically effective antiâ€CD2 monoclonal antibody. Scandinavian Journal of Immunology, 2020, 91, e12839.	1.3	9

#	Article	lF	CITATIONS
19	Siplizumab selectively depletes effector memory T cells and promotes a relative expansion of alloreactive regulatory T cells in vitro. American Journal of Transplantation, 2020, 20, 88-100.	2.6	26
20	Transgenic expression of human CD47 reduces phagocytosis of porcine endothelial cells and podocytes by baboon and human macrophages. Xenotransplantation, 2020, 27, e12549.	1.6	22
21	Deletion of donor-reactive T cell clones after human liver transplant. American Journal of Transplantation, 2020, 20, 538-545.	2.6	31
22	Safety and pharmacodynamics of antiâ€ <scp>CD</scp> 2 monoclonal antibody treatment in cynomolgus macaques – an experimental study. Transplant International, 2020, 33, 98-107.	0.8	7
23	Intraâ€bone bone marrow transplantation from hCD47 transgenic pigs to baboons prolongs chimerism to >60 days and promotes increased porcine lung transplant survival. Xenotransplantation, 2020, 27, e12552.	1.6	36
24	Rapid thymectomy of NSG mice to analyze the role of native and grafted thymi in humanized mice. European Journal of Immunology, 2020, 50, 138-141.	1.6	14
25	Reduced positive selection of a human TCR in a swine thymus using a humanized mouse model for xenotolerance induction. Xenotransplantation, 2020, 27, e12558.	1.6	6
26	Impact of CMV Reactivation, Treatment Approaches, and Immune Reconstitution in a Nonmyeloablative Tolerance Induction Protocol in Cynomolgus Macaques. Transplantation, 2020, 104, 270-279.	0.5	3
27	Negative selection of human T cells recognizing a naturally-expressed tissue-restricted antigen in the human thymus. Journal of Translational Autoimmunity, 2020, 3, 100061.	2.0	9
28	How Safe Are Universal Pluripotent Stem Cells?. Cell Stem Cell, 2020, 26, 307-308.	5.2	14
29	Transient-mixed Chimerism With Nonmyeloablative Conditioning Does Not Induce Liver Allograft Tolerance in Nonhuman Primates. Transplantation, 2020, 104, 1580-1590.	0.5	13
30	Transplantation tolerance in nonhuman primates and humans. Bone Marrow Transplantation, 2019, 54, 815-821.	1.3	8
31	Preparation of hybrid porcine thymus containing nonâ€human primate thymic epithelial cells in miniature swine. Xenotransplantation, 2019, 26, e12543.	1.6	5
32	Transplanting organs from pigs to humans. Science Immunology, 2019, 4, .	5.6	117
33	Harnessing Hematopoietic Stem Cell Low Intracellular Calcium Improves Their Maintenance InÂVitro. Cell Stem Cell, 2019, 25, 225-240.e7.	5.2	64
34	Generation and persistence of human tissue-resident memory T cells in lung transplantation. Science Immunology, 2019, 4, .	5.6	203
35	Posttransplant Hemophagocytic Lymphohistiocytosis Driven by Myeloid Cytokines and Vicious Cycles of T-Cell and Macrophage Activation in Humanized Mice. Frontiers in Immunology, 2019, 10, 186.	2.2	50
36	Characterization, biology, and expansion of regulatory T cells in the Cynomolgus macaque for preclinical studies. American Journal of Transplantation, 2019, 19, 2186-2198.	2.6	9

Megan Sykes

#	Article	IF	CITATIONS
37	Twenty-year Follow-up of Histocompatibility Leukocyte Antigen-matched Kidney and Bone Marrow Cotransplantation for Multiple Myeloma With End-stage Renal Disease: Lessons Learned. Transplantation, 2019, 103, 2366-2372.	0.5	19
38	Human Intestinal Allografts Contain Functional Hematopoietic Stem and Progenitor Cells that Are Maintained by a Circulating Pool. Cell Stem Cell, 2019, 24, 227-239.e8.	5.2	43
39	Cross-reactive public TCR sequences undergo positive selection in the human thymic repertoire. Journal of Clinical Investigation, 2019, 129, 2446-2462.	3.9	55
40	lmmune monitoring of transplant patients in transient mixed chimerism tolerance trials. Human Immunology, 2018, 79, 334-342.	1.2	13
41	GalTâ€ <scp>KO</scp> pig lungs are highly susceptible to acute vascular rejection in baboons, which may be mitigated by transgenic expression of <scp>hCD</scp> 47 on porcine blood vessels. Xenotransplantation, 2018, 25, e12391.	1.6	32
42	β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells. Diabetes, 2018, 67, 26-35.	0.3	74
43	Early expansion of donor-specific Tregs in tolerant kidney transplant recipients. JCI Insight, 2018, 3, .	2.3	54
44	Quantifying size and diversity of the human T cell alloresponse. JCI Insight, 2018, 3, .	2.3	69
45	IXA Honorary Member Lecture, 2017: The long and winding road to tolerance. Xenotransplantation, 2018, 25, e12419.	1.6	8
46	Origin of Enriched Regulatory T Cells in Patients Receiving Combined Kidney–Bone Marrow Transplantation to Induce Transplantation Tolerance. American Journal of Transplantation, 2017, 17, 2020-2032.	2.6	43
47	Tolerance in xenotransplantation. Current Opinion in Organ Transplantation, 2017, 22, 522-528.	0.8	32
48	Type 1 diabetes induction in humanized mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10954-10959.	3.3	67
49	Differing Mechanisms for Early Versus Persistent Donor T cell Chimerism in Peripheral Blood of Human Intestinal Transplant Recipients. Transplantation, 2017, 101, S63-S64.	0.5	1
50	Mechanisms of Mixed Chimerism-Based Transplant Tolerance. Trends in Immunology, 2017, 38, 829-843.	2.9	66
51	Effect of Ex Vivo–Expanded Recipient Regulatory T Cells on Hematopoietic Chimerism and Kidney Allograft Tolerance Across MHC Barriers in Cynomolgus Macaques. Transplantation, 2017, 101, 274-283.	0.5	61
52	HSC extrinsic sex-related and intrinsic autoimmune disease–related human B-cell variation is recapitulated in humanized mice. Blood Advances, 2017, 1, 2007-2018.	2.5	16
53	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	2.2	43
54	Alloimmune T cells in transplantation. Journal of Clinical Investigation, 2017, 127, 2473-2481.	3.9	83

#	Article	IF	CITATIONS
55	Novel H-shunt Venovenous Bypass for Liver Transplantation in Cynomolgus Macaques. Comparative Medicine, 2017, 67, 436-441.	0.4	6
56	Modeling Human Leukemia Immunotherapy in Humanized Mice. EBioMedicine, 2016, 10, 101-108.	2.7	19
57	Executive Summary of IPITA-TTS Opinion Leaders Report on the Future of β-Cell Replacement. Transplantation, 2016, 100, e25-e31.	0.5	32
58	A New Window into the Human Alloresponse. Transplantation, 2016, 100, 1639-1649.	0.5	21
59	Bidirectional intragraft alloreactivity drives the repopulation of human intestinal allografts and correlates with clinical outcome. Science Immunology, 2016, 1, .	5.6	98
60	MHC Class I Expression by Donor Hematopoietic Stem Cells Is Required to Prevent NK Cell Attack in Allogeneic, but Not Syngeneic Recipient Mice. PLoS ONE, 2015, 10, e0141785.	1.1	4
61	Restimulation After Cryopreservation and Thawing Preserves the Phenotype and Function of Expanded Baboon Regulatory T Cells. Transplantation Direct, 2015, 1, 1-7.	0.8	13
62	Author response to comment on "Tracking donor-reactive T cells: Evidence for clonal deletion in tolerant kidney transplant patients― Science Translational Medicine, 2015, 7, 297lr1.	5.8	3
63	Rapid Functional Decline of Activated and Memory Graft-versus-Host–Reactive T Cells Encountering Host Antigens in the Absence of Inflammation. Journal of Immunology, 2015, 195, 1282-1292.	0.4	5
64	Tracking donor-reactive T cells: Evidence for clonal deletion in tolerant kidney transplant patients. Science Translational Medicine, 2015, 7, 272ra10.	5.8	191
65	Introduction of David H. Sachs, MD, Recipient of the 2014 Medawar Prize. Transplantation, 2015, 99, 253-254.	0.5	0
66	OX40- and CD27-Mediated Costimulation Synergizes with Anti–PD-L1 Blockade by Forcing Exhausted CD8+ T Cells To Exit Quiescence. Journal of Immunology, 2015, 194, 125-133.	0.4	65
67	Xenograft Tolerance and Immune Function of Human T Cells Developing in Pig Thymus Xenografts. Journal of Immunology, 2014, 192, 3442-3450.	0.4	37
68	Induction of Tolerance through Mixed Chimerism. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015529-a015529.	2.9	111
69	Transplantation: moving to the next level. Immunological Reviews, 2014, 258, 5-11.	2.8	2
70	Xenotransplantation: immunological hurdles and progress toward tolerance. Immunological Reviews, 2014, 258, 241-258.	2.8	127
71	Thymic Education of Human T Cells and Regulatory T Cell Development in Humanized Mice. , 2014, , 127-140.		0
72	Distribution and Compartmentalization of Human Circulating and Tissue-Resident Memory T Cell Subsets. Immunity, 2013, 38, 187-197.	6.6	730

#	Article	IF	CITATIONS
73	HLA-Mismatched Renal Transplantation without Maintenance Immunosuppression. New England Journal of Medicine, 2013, 368, 1850-1852.	13.9	411
74	A Model for Personalized in Vivo Analysis of Human Immune Responsiveness. Science Translational Medicine, 2012, 4, 125ra30.	5.8	108
75	Transplantation Immunology. , 2012, , 235-239.		1
76	Human Natural Regulatory T Cell Development, Suppressive Function, and Postthymic Maturation in a Humanized Mouse Model. Journal of Immunology, 2011, 187, 3895-3903.	0.4	55
77	In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature, 2011, 474, 216-219.	13.7	502
78	Translational studies in hematopoietic cell transplantation: Treatment of hematologic malignancies as a stepping stone to tolerance induction. Seminars in Immunology, 2011, 23, 273-281.	2.7	29
79	Immuno-intervention for the induction of transplantation tolerance through mixed chimerism. Seminars in Immunology, 2011, 23, 165-173.	2.7	76
80	Advances in transplantation. Seminars in Immunology, 2011, 23, 222-223.	2.7	6
81	Long-Term Follow-Up of Recipients of Combined Human Leukocyte Antigen-Matched Bone Marrow and Kidney Transplantation for Multiple Myeloma With End-Stage Renal Disease. Transplantation, 2011, 91, 672-676.	0.5	143
82	Enforced Co-Stimulation and Co-Inhibitory Blockade Synergize to Enhance the Functions of Exhausted CTL. Blood, 2011, 118, 1911-1911.	0.6	0
83	Mixed Chimerism, Lymphocyte Recovery, and Evidence for Early Donor-Specific Unresponsiveness in Patients Receiving Combined Kidney and Bone Marrow Transplantation to Induce Tolerance. Transplantation, 2010, 90, 1607-1615.	0.5	64
84	A CD8 T cell–intrinsic role for the calcineurin-NFAT pathway for tolerance induction in vivo. Blood, 2010, 115, 1280-1287.	0.6	40
85	Occurrence of specific humoral non-responsiveness to swine antigens following administration of GalT-KO bone marrow to baboons. Xenotransplantation, 2010, 17, 300-312.	1.6	33
86	Invariant NKT Cells Are Required for Antitumor Responses Induced by Host-Versus-Graft Responses. Journal of Immunology, 2010, 185, 2099-2105.	0.4	23
87	Homeostatic Expansion and Phenotypic Conversion of Human T Cells Depend on Peripheral Interactions with APCs. Journal of Immunology, 2010, 184, 6756-6765.	0.4	48
88	Nonhematopoietic antigen blocks memory programming of alloreactive CD8+ T cells and drives their eventual exhaustion in mouse models of bone marrow transplantation. Journal of Clinical Investigation, 2010, 120, 3855-3868.	3.9	52
89	Induction of Robust Cellular and Humoral Virus-Specific Adaptive Immune Responses in Human Immunodeficiency Virus-Infected Humanized BLT Mice. Journal of Virology, 2009, 83, 7305-7321.	1.5	247
90	Chapter 1: Key ethical requirements and progress toward the definition of an international regulatory framework. Xenotransplantation, 2009, 16, 203-214.	1.6	41

#	Article	IF	CITATIONS
91	Hematopoietic Cell Transplantation for Tolerance Induction: Animal Models to Clinical Trials. Transplantation, 2009, 87, 309-316.	0.5	61
92	Long Term Follow-up of Recipients of Combined HLA-Matched Nonmyeloablative Bone Marrow and Kidney Transplantation for Multiple Myeloma with End-Stage Renal Disease Blood, 2009, 114, 3368-3368.	0.6	1
93	Persistence of Donor-Derived Protein in Host Myeloid Cells After Induced Rejection of Engrafted Allogeneic Bone Marrow Cells Blood, 2009, 114, 63-63.	0.6	0
94	Manipulating the immune system for antiâ€ŧumor responses and transplant tolerance via mixed hematopoietic chimerism. Immunological Reviews, 2008, 223, 334-360.	2.8	30
95	HLA-Mismatched Renal Transplantation without Maintenance Immunosuppression. New England Journal of Medicine, 2008, 358, 353-361.	13.9	965
96	The Host Environment Regulates the Function of CD8+ Graft-versus-Host-Reactive Effector Cells. Journal of Immunology, 2008, 181, 6820-6828.	0.4	29
97	Rapid Deletional Peripheral CD8 T Cell Tolerance Induced by Allogeneic Bone Marrow: Role of Donor Class II MHC and B Cells. Journal of Immunology, 2008, 181, 4371-4380.	0.4	29
98	Abnormal Regulatory and Effector T Cell Function Predispose to Autoimmunity following Xenogeneic Thymic Transplantation. Journal of Immunology, 2008, 181, 7649-7659.	0.4	20
99	Antigen-specific human T-cell responses and T cell–dependent production of human antibodies in a humanized mouse model. Blood, 2008, 111, 4293-4296.	0.6	120
100	Comparison of Human T Cell Repertoire Generated in Xenogeneic Porcine and Human Thymus Grafts. Transplantation, 2008, 86, 601-610.	0.5	22
101	Lack of "Bystander―Activation and Evidence for Competition for Resources among Gvh-Reactive CD4 T Cells. Blood, 2008, 112, 3507-3507.	0.6	0
102	Characterization of NK1.1+ CD8 T Cells in Allogeneic Hematopoietic Cell Transplantation Recipients. Blood, 2008, 112, 4616-4616.	0.6	0
103	Role for CD47-SIRPÂ signaling in xenograft rejection by macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5062-5066.	3.3	270
104	Porcine Thymic Grafts Protect Human Thymocytes from HIVâ€1–Induced Destruction. Journal of Infectious Diseases, 2007, 196, 900-910.	1.9	7
105	Attenuation of phagocytosis of xenogeneic cells by manipulating CD47. Blood, 2007, 109, 836-842.	0.6	111
106	The role of antigen-presenting cells in triggering graft-versus-host disease and graft-versus-leukemia. Blood, 2007, 110, 9-17.	0.6	150
107	B-cell extrinsic CR1/CR2 promotes natural antibody production and tolerance induction of anti-αGAL–producing B-1 cells. Blood, 2007, 109, 1773-1781.	0.6	20
108	Advances in xenotransplantation: is the Gal knockout pig essential to clinical success?. Xenotransplantation, 2007, 14, 174-175.	1.6	2

#	Article	IF	CITATIONS
109	Satellite Symposium held in conjunction with the World Transplant Congress, Boston, 2006. Xenotransplantation, 2007, 14, 347-347.	1.6	4
110	Regulatory T-cell recovery in recipients of haploidentical nonmyeloablative hematopoietic cell transplantation with a humanized anti-CD2 mAb, MEDI-507, with or without fludarabine. Experimental Hematology, 2007, 35, 1140-1152.	0.2	48
111	Non-Myeloablative T-Cell Depleted (TCD) Haploidentical Hematopoietic Cell Transplantation (HCT) Followed by Donor Leukocyte Infusion(s) for Hematologic Malignancies: The MGH Experience Blood, 2007, 110, 5088-5088.	0.6	0
112	Targeting CD134 Results in Selective Depletion of Alloreactive Human T Cells without Loss of Virus-Specific and Leukemia-Specific Effectors Blood, 2007, 110, 2174-2174.	0.6	0
113	Clonal Expansion of Graft-Versus-Host Reactive CD8+ T Cells Is Dissociated from Full Effector Differentiation Following Delayed DLI Blood, 2007, 110, 2170-2170.	0.6	0
114	Expression of Chemokines in GVHD Target Organs Is Influenced by Conditioning and Genetic Factors and Amplified by GVHR. Biology of Blood and Marrow Transplantation, 2006, 12, 623-634.	2.0	70
115	Host MHC class II+ antigen-presenting cells and CD4 cells are required for CD8-mediated graft-versus-leukemia responses following delayed donor leukocyte infusions. Blood, 2006, 108, 2106-2113.	0.6	96
116	Characterization of Anti-Gal Antibody-Producing Cells of Baboons and Humans. Transplantation, 2006, 81, 940-948.	0.5	14
117	Clinical relevance of recipient leukocyte infusion as antitumor therapy following nonmyeloablative allogeneic hematopoietic cell transplantation. Experimental Hematology, 2006, 34, 1270-1276.	0.2	26
118	Role of indirect allo- and autoreactivity in anti-tumor responses induced by recipient leukocyte infusions (RLI) in mixed chimeras prepared with nonmyeloablative conditioning. Clinical Immunology, 2006, 120, 33-44.	1.4	19
119	An inflammatory checkpoint regulates recruitment of graft-versus-host reactive T cells to peripheral tissues. Journal of Experimental Medicine, 2006, 203, 2021-2031.	4.2	170
120	Specific Non-Responsiveness to Pig in Baboons Receiving BMT from GalT-KO Pigs Blood, 2006, 108, 5265-5265.	0.6	1
121	B cell tolerance and xenotransplantation. Current Opinion in Organ Transplantation, 2005, 10, 252-258.	0.8	3
122	Vascularized Thymic Lobe Transplantation in a Pig-to-Baboon Model: A Novel Strategy for Xenogeneic Tolerance Induction and T-cell Reconstitution. Transplantation, 2005, 80, 1783-1790.	0.5	35
123	Anti-tumour response despite loss of donor chimaerism in patients treated with non-myeloablative conditioning and allogeneic stem cell transplantation. British Journal of Haematology, 2005, 128, 351-359.	1.2	83
124	Marked prolongation of porcine renal xenograft survival in baboons through the use of α1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nature Medicine, 2005, 11, 32-34.	15.2	560
125	Early regulation of CD8 T cell alloreactivity by CD4+CD25-T cells in recipients of anti-CD154 antibody and allogeneic BMT is followed by rapid peripheral deletion of donor-reactive CD8+ T cells, precluding a role for sustained regulation. European Journal of Immunology, 2005, 35, 2679-2690.	1.6	72
126	Mechanisms of the Antitumor Responses and Host-versus-Graft Reactions Induced by Recipient Leukocyte Infusions in Mixed Chimeras Prepared with Nonmyeloablative Conditioning: A Critical Role for Recipient CD4+ T Cells and Recipient Leukocyte Infusion-Derived IFN-Î ³ -Producing CD8+ T Cells. Journal of Immunology, 2005, 175, 665-676.	0.4	57

#	Article	IF	CITATIONS
127	Roles of Deletion and Regulation in Creating Mixed Chimerism and Allograft Tolerance Using a Nonlymphoablative Irradiation-Free Protocol. Journal of Immunology, 2005, 175, 51-60.	0.4	69
128	Minimal HLA Disparity and KIR Ligand Compatibility in Host Versus Graft Direction May Facilitate Donor Engraftment Following In Vivo and Ex Vivo T Cell Depleted (TCD) Nonmyeloablative Haploidentical Stem Cell Transplantation for Hematologic Malignancies Blood, 2005, 106, 3668-3668.	0.6	0
129	Development of Late over Early Full Donor Chimerism (FDC) Results in Improved Progression-Free and Overall Survival in Patients with Advanced Malignant Lymphomas Receiving Nonmyeloablative Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) Blood, 2005, 106, 3665-3665.	0.6	0
130	CD154 Blockade for Induction of Mixed Chimerism and Prolonged Renal Allograft Survival in Nonhuman Primates. American Journal of Transplantation, 2004, 4, 1391-1398.	2.6	183
131	Earlier Low-Dose TBI or DST Overcomes CD8+ T-Cell-Mediated Alloresistance to Allogeneic Marrow in Recipients of Anti-CD40L. American Journal of Transplantation, 2004, 4, 31-40.	2.6	62
132	Tolerance in mixed chimerism – a role for regulatory cells?. Trends in Immunology, 2004, 25, 518-523.	2.9	70
133	Position Paper of the Ethics Committee of the International Xenotransplantation Association. Transplantation, 2004, 78, 1101-1107.	0.5	38
134	Graft-versus-host-reactive donor CD4 cells can induce T cell-mediated rejection of the donor marrow in mixed allogeneic chimeras prepared with nonmyeloablative conditioning. Blood, 2004, 103, 732-739.	0.6	15
135	Mechanisms of early peripheral CD4 T-cell tolerance induction by anti-CD154 monoclonal antibody and allogeneic bone marrow transplantation: evidence for anergy and deletion but not regulatory cells. Blood, 2004, 103, 4336-4343.	0.6	106
136	Induction of human T-cell tolerance to porcine xenoantigens through mixed hematopoietic chimerism. Blood, 2004, 103, 3964-3969.	0.6	89
137	Mouse retrovirus mediates porcine endogenous retrovirus transmission into human cells in long-term human-porcine chimeric mice. Journal of Clinical Investigation, 2004, 114, 695-700.	3.9	33
138	Proliferation, Expansion, Effector Differentiation and Survival of GVH-Reactive T Cells Following Delayed DLI to Mixed Chimeras Blood, 2004, 104, 594-594.	0.6	1
139	Sequential Blockade and Engagement of Co-Stimulatory Pathways: A Potential Strategy for Amplifying Graft-Versus-Leukemia Responses without GVHD Blood, 2004, 104, 3075-3075.	0.6	0
140	Host Environment Dictates the Outcome Following Transfer of Graft-Versus-Host Reactive Effector/Memory T Cells Blood, 2004, 104, 3046-3046.	0.6	7
141	Clinical Relevance of Recipient Leukocyte Infusion (RLI) Therapy Blood, 2004, 104, 2120-2120.	0.6	0
142	Lack of Role for CsA-Sensitive or Fas Pathways in the Tolerization of CD4 T Cells Via BMT and Anti-CD40L. American Journal of Transplantation, 2003, 3, 804-816.	2.6	27
143	Early host CD8 T-cell recovery and sensitized anti-donor interleukin-2–producing and cytotoxic T-cell responses associated with marrow graft rejection following nonmyeloablative allogeneic bone marrow transplantation. Experimental Hematology, 2003, 31, 609-621.	0.2	44
144	Fetal porcine thymus engraftment, survival and CD4 reconstitution in αGal-KO mice is impaired in the presence of high levels of antibodies against αGal. Xenotransplantation, 2003, 10, 24-40.	1.6	11

#	Article	IF	CITATIONS
145	B cell tolerance to xenoantigens. Xenotransplantation, 2003, 10, 98-106.	1.6	13
146	Impact of prophylactic donor leukocyte infusions on mixed chimerism, graft-versus-host disease, and antitumor response in patients with advanced hematologic malignancies treated with nonmyeloablative conditioning and allogeneic bone marrow transplantation. Biology of Blood and Marrow Transplantation, 2003, 9, 320-329.	2.0	140
147	NK Cell Tolerance in Mixed Allogeneic Chimeras. Journal of Immunology, 2003, 170, 5398-5405.	0.4	63
148	Peritoneal Cavity B Cells Are Precursors of Splenic IgM Natural Antibody-Producing Cells. Journal of Immunology, 2003, 171, 5406-5414.	0.4	136
149	Xenogeneic thymokidney and thymic tissue transplantation in a pig-to-baboon model: I. evidence for pig-specific T-cell unresponsiveness1. Transplantation, 2003, 75, 1615-1624.	0.5	72
150	Xenogeneic thymus transplantation in a pig-to-baboon model1. Transplantation, 2003, 75, 282-291.	0.5	23
151	Nonmyeloablative haploidentical stem-cell transplantation using anti-CD2 monoclonal antibody (MEDI-507)-based conditioning for refractory hematologic malignancies. Transplantation, 2003, 75, 1748-1751.	0.5	115
152	Despite efficient intrathymic negative selection of host-reactive T cells, autoimmune disease may develop in porcine thymus-grafted athymic mice: evidence for failure of regulatory mechanisms suppressing autoimmunity1. Transplantation, 2003, 75, 1832-1840.	0.5	24
153	Donor lymphocyte infusion-mediated graft-versus-leukemia effects in mixed chimeras established with a nonmyeloablative conditioning regimen: extinction of graft-versus-leukemia effects after conversion to full donor chimerism1. Transplantation, 2003, 76, 297-305.	0.5	72
154	Antitumor effect of donor marrow graft rejection induced by recipient leukocyte infusions in mixed chimeras prepared with nonmyeloablative conditioning: critical role for recipient-derived IFN-Î ³ . Blood, 2003, 102, 2300-2307.	0.6	86
155	Elimination of Porcine Hemopoietic Cells by Macrophages in Mice. Journal of Immunology, 2002, 168, 621-628.	0.4	55
156	Murine CD4 T Cells Selected in a Highly Disparate Xenogeneic Porcine Thymus Graft Do Not Show Rapid Decay in the Absence of Selecting MHC in the Periphery. Journal of Immunology, 2002, 169, 6697-6710.	0.4	7
157	Fluctuating lymphocyte chimerism, tolerance and anti-tumor response in a patient with refractory lymphoma receiving non-myeloablative conditioning and a haploidentical related allogeneic bone marrow transplant. Cytokines, Cellular & Molecular Therapy, 2002, 7, 43-47.	0.3	12
158	Induction Of Kidney Allograft Tolerance After Transient Lymphohematopoietic Chimerism In Patients With Multiple Myeloma And End-Stage Renal Disease1. Transplantation, 2002, 74, 1405-1409.	0.5	248
159	Mixed chimerism induces donor-specific T-cell tolerance across a highly disparate xenogeneic barrier. Blood, 2002, 99, 3823-3829.	0.6	50
160	Donor lymphocyte infusions mediate superior graft-versus-leukemia effects in mixed compared to fully allogeneic chimeras: a critical role for host antigen–presenting cells. Blood, 2002, 100, 1903-1909.	0.6	226
161	Porcine mononuclear cells adhere to human fibronectin independently of very late antigen-5: implications for donor-specific tolerance induction in xenotransplantation. Xenotransplantation, 2002, 9, 277-289.	1.6	7
162	Non-Myeloblative Induction of Mixed Hematopoietic Chimerism: Application to Transplantation Tolerance and Hematologic Malignancies in Experimental and Clinical Studies. Cancer Treatment and Research, 2002, 110, 79-99.	0.2	22

#	Article	IF	CITATIONS
163	Induction of tolerance by mixed chimerism with nonmyeloblative host conditioning: The importance of overcoming intrathymic alloresistance. Biology of Blood and Marrow Transplantation, 2001, 7, 144-153.	2.0	41
164	Induction of stable long-term mixed hematopoietic chimerism following nonmyeloablative conditioning with T cell-depleting antibodies, cyclophosphamide, and thymic irradiation leads to donor-specific in vitro and in vivo tolerance. Biology of Blood and Marrow Transplantation, 2001, 7, 646-655.	2.0	60
165	Mixed Chimerism and Transplant Tolerance. Immunity, 2001, 14, 417-424.	6.6	378
166	HIGHLY DISPARATE XENOGENEIC SKIN GRAFT TOLERANCE INDUCTION BY FETAL PIG THYMUS IN THYMECTOMIZED MICE. Transplantation, 2001, 72, 1608-1615.	0.5	21
167	Tolerization of Galα1,3Gal-reactive B cells in pre-sensitized α1,3-galactosyltransferase-deficient mice by nonmyeloablative induction of mixed chimerism. Xenotransplantation, 2001, 8, 227-238.	1.6	50
168	Mechanisms Involved in the Establishment of Tolerance Through Costimulatory Blockade and BMT: Lack of Requirement for CD40L-Mediated Signaling for Tolerance or Deletion of Donor-reactive CD4+ Cells. American Journal of Transplantation, 2001, 1, 339-349.	2.6	71
169	Both γδT Cells and NK Cells Inhibit the Engraftment of Xenogeneic Rat Bone Marrow Cells and the Induction of Xenograft Tolerance in Mice. Journal of Immunology, 2001, 166, 1398-1404.	0.4	48
170	CD4 T Cell-Mediated Alloresistance to Fully MHC-Mismatched Allogeneic Bone Marrow Engraftment Is Dependent on CD40-CD40 Ligand Interactions, and Lasting T Cell Tolerance Is Induced by Bone Marrow Transplantation with Initial Blockade of this Pathway. Journal of Immunology, 2001, 166, 2970-2981.	0.4	102
171	Peripheral Deletion After Bone Marrow Transplantation with Costimulatory Blockade Has Features of Both Activation-Induced Cell Death and Passive Cell Death. Journal of Immunology, 2001, 166, 2311-2316.	0.4	110
172	Mixed chimerism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 707-726.	1.8	69
173	T CELL AND B CELL TOLERANCE TO GAL??1,3GAL-EXPRESSING HEART XENOGRAFTS IS ACHIEVED IN ??1,3-GALACTOSYLTRANSFERASE-DEFICIENT MICE BY NONMYELOABLATIVE INDUCTION OF MIXED CHIMERISM1. Transplantation, 2001, 71, 1532-1542.	0.5	65
174	Development and analysis of transgenic mice expressing porcine hematopoietic cytokines: a model for achieving durable porcine hematopoietic chimerism across an extensive xenogeneic barrier. Xenotransplantation, 2000, 7, 58-64.	1.6	22
175	The critical role of mouse CD4+ cells in the rejection of highly disparate xenogeneic pig thymus grafts. Xenotransplantation, 2000, 7, 129-137.	1.6	17
176	Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nature Medicine, 2000, 6, 464-469.	15.2	491
177	A novel application of cyclosporine A in nonmyeloablative pretransplant host conditioning for allogeneic BMT. Blood, 2000, 96, 1166-1172.	0.6	31
178	Mac-1-Negative B-1b Phenotype of Natural Antibody-Producing Cells, Including Those Responding to Galα1,3Gal Epitopes in α1,3-Galactosyltransferase-Deficient Mice. Journal of Immunology, 2000, 165, 5518-5529.	0.4	116
179	Intentional induction of mixed chimerism and achievement of antitumor responses after nonmyeloablative conditioning therapy and HLA-matched donor bone marrow transplantation for refractory hematologic malignancies. Biology of Blood and Marrow Transplantation, 2000, 6, 309-320.	2.0	239
180	ROLE OF ANTIBODY-INDEPENDENT COMPLEMENT ACTIVATION IN REJECTION OF PORCINE BONE MARROW CELLS IN MICE 1. Transplantation, 2000, 69, 163.	0.5	15

#	Article	IF	CITATIONS
181	CROSS-SPECIES COMPATIBILITY OF INTERCELLULAR ADHESION MOLECULE-1 (CD54) WITH ITS LIGANDS1. Transplantation, 2000, 69, 394-399.	0.5	17
182	IN VIVO T-CELL DEPLETION ENHANCES PRODUCTION OF ANTI-GAL??1,3GAL NATURAL ANTIBODIES IN ??1,3-GALACTOSYLTRANSFERASE-DEFICIENT MICE1. Transplantation, 2000, 69, 910-913.	0.5	29
183	THE INDUCTION OF SPECIFIC PIG SKIN GRAFT TOLERANCE BY GRAFTING WITH NEONATAL PIG THYMUS IN THYMECTOMIZED MICE1. Transplantation, 2000, 69, 1447-1451.	0.5	19
184	PORCINE STEM CELL ENGRAFTMENT AND SEEDING OF MURINE THYMUS WITH CLASS II+ CELLS IN MICE EXPRESSING PORCINE CYTOKINES. Transplantation, 2000, 69, 2484-2490.	0.5	44
185	Mixed chimerism and tolerance without whole body irradiation in a large animal model. Journal of Clinical Investigation, 2000, 105, 1779-1789.	3.9	182
186	Human–porcine receptor–ligand compatibility within the immune system: relevance for xenotransplantation. Xenotransplantation, 1999, 6, 75-78.	1.6	36
187	Efficacy of adhesive interactions in pig-to-human xenotransplantation. Trends in Immunology, 1999, 20, 323-330.	7.5	43
188	Lymphohematopoietic graft-vshost reactions can be induced without graft-vshost disease in murine mixed chimeras established with a cyclophosphamide-based nonmyeloablative conditioning regimen. Biology of Blood and Marrow Transplantation, 1999, 5, 133-143.	2.0	161
189	Mixed lymphohaemopoietic chimerism and graft-ver suslymphoma effects after non-myeloablative therapy and HLA-mismatched bone-marrow transplantation. Lancet, The, 1999, 353, 1755-1759.	6.3	376
190	COMBINED HISTOCOMPATIBILITY LEUKOCYTE ANTIGENMATCHED DONOR BONE MARROW AND RENAL TRANSPLANTATION FOR MULTIPLE MYELOMA WITH END STAGE RENAL DISEASE: THE INDUCTION OF ALLOGRAFT TOLERANCE THROUGH MIXED LYMPHOHEMATOPOIETIC CHIMERISM. Transplantation, 1999, 68, 480-484.	0.5	395
191	ANTI-CD154 OR CTLA4Ig OBVIATES THE NEED FOR THYMIC IRRADIATION IN A NON-MYELOABLATIVE CONDITIONING REGIMEN FOR THE INDUCTION OF MIXED HEMATOPOIETIC CHIMERISM AND TOLERANCE1. Transplantation, 1999, 68, 1348-1355.	0.5	108
192	Mixed chimerism induced without lethal conditioning prevents T cell– and anti-Galα1,3Gal–mediated graft rejection. Journal of Clinical Investigation, 1999, 104, 281-290.	3.9	123
193	Tolerization of Anti–Galα1-3Gal Natural Antibody–forming B Cells by Induction of Mixed Chimerism. Journal of Experimental Medicine, 1998, 187, 1335-1342.	4.2	189
194	Extrathymic T Cell Deletion and Allogeneic Stem Cell Engraftment Induced with Costimulatory Blockade Is Followed by Central T Cell Tolerance. Journal of Experimental Medicine, 1998, 187, 2037-2044.	4.2	328
195	ROLE OF INTRATHYMIC RAT CLASS II+ CELLS IN MAINTAINING DELETIONAL TOLERANCE IN XENOGENEIC RAT???MOUSE BONE MARROW CHIMERAS1. Transplantation, 1998, 65, 1216-1224.	0.5	46
196	INTRATHYMIC DELETION OF ALLOREACTIVE T CELLS IN MIXED BONE MARROW CHIMERAS PREPARED WITH A NONMYELOABLATIVE CONDITIONING REGIMEN1. Transplantation, 1998, 66, 96-102.	0.5	151
197	FUNCTION OF PORCINE ADHESION MOLECULES IN A HUMAN MARROW MICROENVIRONMENT1. Transplantation, 1998, 66, 252-259.	0.5	20
198	CROSS-SPECIES INTERACTION OF PORCINE AND HUMAN INTEGRINS WITH THEIR RESPECTIVE LIGANDS. Transplantation, 1998, 66, 385-394.	0.5	41

#	Article	IF	CITATIONS
199	Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nature Medicine, 1997, 3, 783-787.	15.2	297
200	Tolerance Induction for Xenotransplantation. World Journal of Surgery, 1997, 21, 932-938.	0.8	19
201	DISCORDANT XENOGENEIC NEONATAL THYMIC TRANSPLANTATION CAN INDUCE DONOR-SPECIFIC TOLERANCE1. Transplantation, 1997, 63, 124-131.	0.5	34
202	Immunobiology of transplantation 1. FASEB Journal, 1996, 10, 721-730.	0.2	39
203	Donorâ€specific growth factors promote swine hematopoiesis in severe combined immune deficient mice. Xenotransplantation, 1996, 3, 92-101.	1.6	39
204	Host marrow has a competitive advantage that limits donor hematopoietic repopulation in mixed xenogeneic chimeras. Xenotransplantation, 1996, 3, 312-320.	1.6	39
205	Skin graft tolerance across a discordant xenogeneic barrier. Nature Medicine, 1996, 2, 1211-1216.	15.2	196
206	NATURAL KILLER CELLS WEAKLY RESIST ENGRAFTMENT OF ALLOGENEIC, LONG-TERM, MULTILINEAGE-REPOPULATING HEMATOPOIETIC STEM CELLS1. Transplantation, 1996, 61, 125-132.	0.5	79
207	ADDITIONAL MONOCLONAL ANTIBODY (mAB) INJECTIONS CAN REPLACE THYMIC IRRADIATION TO ALLOW INDUCTION OF MIXED CHIMERISM AND TOLERANCE IN MICE RECEIVING BONE MARROW TRANSPLANTATION AFTER CONDITIONING WITH ANTI-T CELL mABs AND 3-GY WHOLE BODY IRRADIATION1. Transplantation, 1996, 61, 469-477.	0.5	117
208	MECHANISM BY WHICH ADDITIONAL MONOCLONAL ANTIBODY (mAB) INJECTIONS OVERCOME THE REQUIREMENT FOR THYMIC IRRADIATION TO ACHIEVE MIXED CHIMERISM IN MICE RECEIVING BONE MARROW TRANSPLANTATION AFTER CONDITIONING WITH ANTI-T CELL mABs AND 3-GY WHOLE BODY IRRADIATION1. Transplantation, 1996, 61, 477-485.	0.5	71
209	THYMIC DEPENDENCE OF LOSS OF TOLERANCE IN MIXED ALLOGENEIC BONE MARROW CHIMERAS AFTER DEPLETION OF DONOR ANTIGEN. Transplantation, 1996, 62, 380-387.	0.5	167
210	Evidence for nonimmune mechanisms in the loss of hematopoietic chimerism in rat→mouse mixed xenogeneic chimeras. Xenotransplantation, 1995, 2, 57-66.	1.6	34
211	Mixed Allogeneic Chimerism And Renal Allograft Tolerance In Cynomolgus Monkeys. Transplantation, 1995, 59, 256-262.	0.5	502
212	Xenograft Tolerance. Immunological Reviews, 1994, 141, 245-276.	2.8	58
213	Engraftment of rat bone marrow and its role in negative selection of murine T cells in mice conditioned with a modified nonmyeloablative regimen. Xenotransplantation, 1994, 1, 109-117.	1.6	32
214	THE IMPORTANCE OF NONIMMUNE FACTORS IN RECONSTITUTION BY DISCORDANT XENOGENEIC HEMATOPOIETIC CELLS1,2. Transplantation, 1994, 57, 906-917.	0.5	64
215	HUMORAL TOLERANCE IN XENOGENEIC BMT RECIPIENTS CONDITIONED BY A NONMYELOABLATIVE REGIMEN. Transplantation, 1992, 53, 1108-1114.	0.5	73