
John T Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4763826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Early work supports chemoaffinity with one contradictory result. , 2020, , 15-35.		1
2	Growth of the retina and tectum: Implications for the retinotectal map. , 2020, , 109-138.		0
3	Development of the visual pathways. , 2020, , 191-253.		0
4	Activity-driven synaptic stabilization. , 2020, , 305-356.		0
5	Activity: Molecular signaling to growth mechanisms. , 2020, , 357-418.		0
6	Overview and basics of the retinotectal system. , 2020, , 1-13.		1
7	Plasticity after surgical interventions: Size disparity experiments. , 2020, , 67-108.		Ο
8	A role for the polarity complex and PI3 kinase in branch formation within retinotectal arbors of zebrafish. Developmental Neurobiology, 2014, 74, 591-601.	3.0	11
9	GAP43 phosphorylation, is critical for growth and branching, of retinotectal arbors in zebrafish. Developmental Neurobiology, 2010, 70, n/a-n/a.	3.0	35
10	Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: Possible role in activity-driven sharpening. Journal of Neurobiology, 2004, 58, 328-340.	3.6	35
11	Activity-driven sharpening of the retinotectal projection: The search for retrograde synaptic signaling pathways. Journal of Neurobiology, 2004, 59, 114-133.	3.6	61
12	Myosin light chain phosphorylation and growth cone motility. Journal of Neurobiology, 2002, 52, 175-188.	3.6	41
13	Adenosine A1 and Class II Metabotropic Glutamate Receptors Mediate Shared Presynaptic Inhibition of Retinotectal Transmission. Journal of Neurophysiology, 1999, 82, 2947-2955.	1.8	44
14	Up-regulation of protein kinase C in regenerating optic nerve fibers of goldfish: Immunohistochemistry and kinase activity assay. , 1998, 36, 315-324.		9
15	Role for cell adhesion and glycosyl (HNK-1 and oligomannoside) recognition in the sharpening of the regenerating retinotectal projection in goldfish. , 1998, 37, 659-671.		25
16	Adenosine A1 Receptors Mediate Retinotectal Presynaptic Inhibition: Uncoupling by C-Kinase and Role in LTP During Regeneration. Journal of Neurophysiology, 1998, 79, 501-510.	1.8	25
17	Rapid activity-dependent sprouting of optic fibers into a local area denervated by application of beta-bungarotoxin in goldfish tectum. , 1996, 29, 75-90.		3
18	Myosin light chain kinase: expression in neurons and upregulation during axon regeneration. , 1996, 31, 379-391.		28

John T Schmidt

#	Article	IF	CITATIONS
19	Changes in retinal arbors in compressed projections to half tecta in goldfish. Journal of Neurobiology, 1995, 28, 409-418.	3.6	5
20	The modulatory cholinergic system in goldfish tectum may be necessary for retinotopic sharpening. Visual Neuroscience, 1995, 12, 1093-1103.	1.0	26
21	C-kinase manipulations disrupt activity-driven retinotopic sharpening in regenerating goldfish retinotectal projection. Journal of Neurobiology, 1994, 25, 555-570.	3.6	13
22	Activity-driven sharpening of the retinotectal projection in goldfish: Development under stroboscopic illumination prevents sharpening. Journal of Neurobiology, 1993, 24, 384-399.	3.6	62
23	Nucleus isthmi in goldfish: <i>In vitro</i> recordings and fiber connections revealed by HRP injections. Visual Neuroscience, 1993, 10, 419-437.	1.0	28
24	Activity-Driven Mechanisms for Sharpening Retinotopic Projections: Correlated Activity, NMDA Receptors, Calcium Entry, and Beyond. , 1993, , 185-204.		5
25	Long-Term Potentiation during the Activity-Dependent Sharpening of the Retinotopic Map in Goldfish. Annals of the New York Academy of Sciences, 1991, 627, 10-25.	3.8	19
26	A Cholinergic Circuit Intrinsic to Optic Tectum Modulates Retinotectal Transmission via Presynaptic Nicotinic Receptors. Annals of the New York Academy of Sciences, 1991, 627, 363-367.	3.8	16
27	Effects of Blocking or Synchronizing Activity on the Morphology of Individual Regenerating Arbors in the Goldfish Retinotectal Projection. Annals of the New York Academy of Sciences, 1991, 627, 385-389.	3.8	3
28	Ependymin as a substrate for outgrowth of axons from cultured explants of goldfish retina. Journal of Neurobiology, 1991, 22, 40-54.	3.6	26
29	Activity-driven sharpening of the regenerating retinotectal projection: Effects of blocking or synchronizing activity on the morphology of individual regenerating arbors. Journal of Neurobiology, 1990, 21, 900-917.	3.6	44
30	Activity sharpens the regenerating retinotectal projection in goldfish: Sensitive period for strobe illumination and lack of effect on synaptogenesis and on ganglion cell receptive field properties. Journal of Neurobiology, 1988, 19, 395-411.	3.6	44
31	Antibodies to ependymin block the sharpening of the regenerating retinotectal projection in goldfish. Brain Research, 1988, 446, 269-284.	2.2	51
32	Activity-dependent sharpening of the regenerating retinotectal projection in goldfish: relationship to the expression of growth-associated proteins. Brain Research, 1987, 417, 118-126.	2.2	43
33	Activity-dependent synaptic stabilization in development and learning: How similar the mechanisms?. Cellular and Molecular Neurobiology, 1985, 5, 1-3.	3.3	7
34	Eye-specific segregation of optic afferents in mammals, fish, and frogs: The role of activity. Cellular and Molecular Neurobiology, 1985, 5, 5-34.	3.3	43
35	Formation of retinotopic connections: Selective stabilization by an activity-dependent mechanism. Cellular and Molecular Neurobiology, 1985, 5, 65-84.	3.3	67
36	Natural history of optic arbors in the tectum of fish and frog. Trends in Neurosciences, 1984, 7, 358-360.	8.6	2

JOHN T SCHMIDT

#	Article	IF	CITATIONS
37	The formation of retinotectal projections. Trends in Neurosciences, 1982, 5, 111-115.	8.6	38
38	Localization of α-bungarotoxin binding sites to the goldfish retinotectal projection. Brain Research, 1980, 187, 113-127.	2.2	43
39	Electrophysiologic evidence that retinotectal synaptic transmission in the goldfish is nicotinic cholinergic. Brain Research, 1980, 187, 129-142.	2.2	68
40	Expansion of the half retinal projection to the tectum in goldfish: An electrophysiological and Anatomical study. Journal of Comparative Neurology, 1978, 177, 257-277.	1.6	151
41	Retinal fibers alter tectal positional markers during the expansion of the half retinal projection in goldfish. Journal of Comparative Neurology, 1978, 177, 279-299.	1.6	135
42	Bilateral tectal innervation by regenerating optic nerve fibers in goldfish: A radioautographic, electrophysiological and behavioral study. Brain Research, 1977, 128, 417-427.	2.2	31