Ludwig Triest

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4763715/publications.pdf Version: 2024-02-01

		182225	252626
113	2,738	30	46
papers	citations	h-index	g-index
113	113	113	3282
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Balancing ecosystem integrity and cultural values at sacred Lake Hora, Ethiopia: The need for conservation of wetland vegetation. Lakes and Reservoirs: Research and Management, 2022, 27, .	0.6	1

 $_{2}$ Satellite Imageries and Field Data of Macrophytes Reveal a Regime Shift of a Tropical Lake (Lake Ziway,) Tj ETQq0 0.0 rgBT /Overlock 10

3	Diatom community structure in relation to environmental factors in human influenced rivers and streams in tropical Africa. PLoS ONE, 2021, 16, e0246043.	1.1	16
4	Expansion of the mangrove species Rhizophora mucronata in the Western Indian Ocean launched contrasting genetic patterns. Scientific Reports, 2021, 11, 4987.	1.6	12
5	Connectivity of Avicennia marina populations within a proposed marine transboundary conservation area between Kenya and Tanzania. Biological Conservation, 2021, 256, 109040.	1.9	9
6	Mangrove horseshoe crab (<scp><i>Carcinoscorpius rotundicauda</i></scp> Latreille, 1802) populations reveal genetic break in Strait of Malacca, with connectivity along southern coasts of Peninsular Malaysia. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1559-1569.	0.9	5
7	Trading offspring for survival: high duckweed cover decreases reproductive potential and stimulates elongation in the submerged macrophyte Chara globularis Thuillier. Hydrobiologia, 2021, 848, 2667-2680.	1.0	1
8	Coastal Landform Constrains Dispersal in Mangroves. Frontiers in Marine Science, 2021, 8, .	1.2	6
9	Persistent Clones and Local Seed Recruitment Contribute to the Resilience of Enhalus acoroides Populations Under Disturbance. Frontiers in Plant Science, 2021, 12, 658213.	1.7	9
10	Avicennia Genetic Diversity and Fine-Scaled Structure Influenced by Coastal Proximity of Mangrove Fragments. Frontiers in Marine Science, 2021, 8, .	1.2	6
11	Complete Chloroplast Genome Variants Reveal Discrete Long-Distance Dispersal Routes of Rhizophora in the Western Indian Ocean. Frontiers in Conservation Science, 2021, 2, .	0.9	3
12	Low Genetic Connectivity of Strongly Inbred Ruppia brevipedunculata in Aquaculture Dominated Lagoons (Viet Nam). Frontiers in Conservation Science, 2021, 2, .	0.9	2
13	Barrier to Gene Flow of Grey Mangrove Avicennia marina Populations in the Malay Peninsula as Revealed From Nuclear Microsatellites and Chloroplast Haplotypes. Frontiers in Conservation Science, 2021, 2, .	0.9	4
14	Genotypes of Rhizophora Propagules From a Non-mangrove Beach Provide Evidence of Recent Long-Distance Dispersal. Frontiers in Conservation Science, 2021, 2, .	0.9	2
15	Species delimitation and phylogeography of African tree populations of the genus Parkia (Fabaceae). Tree Genetics and Genomes, 2020, 16, 1.	0.6	9
16	Channel network structure determines genetic connectivity of landward–seaward Avicennia marina populations in a tropical bay. Ecology and Evolution, 2020, 10, 12059-12075.	0.8	14
17	Partitioning the influence of hydrodynamics-induced physical variables and nutrients on phytoplankton assemblages in a shallow tropical reservoir (Koka, Ethiopia). Limnology, 2020, 21, 269-274.	0.8	7
18	Hidden Hybridization and Habitat Differentiation in a Mediterranean Macrophyte, the Euryhaline Genus Ruppia. Frontiers in Plant Science, 2020, 11, 830.	1.7	7

#	Article	IF	CITATIONS
19	A profound view and discourse on the typification and status of three confused taxa: Ruppia maritima, R. spiralis and R. cirrhosa. Botanica Marina, 2020, 63, 229-239.	0.6	10
20	Runaway fathers? Limited pollen dispersal and mating system in Rhizophora racemosa populations of a disturbed mangrove estuary. Aquatic Botany, 2020, 165, 103241.	0.8	2
21	Hydrological connectivity and vegetative dispersal shape clonal and genetic structure of the emergent macrophyte Cyperus papyrus in a tropical highland lake (Lake Tana, Ethiopia). Hydrobiologia, 2019, 843, 13-30.	1.0	10
22	Barriers to genetic connectivity of smooth flatsedge (Cyperus laevigatus) among alkaline-saline lakes of Eastern Rift Valley (Kenya). Aquatic Botany, 2019, 155, 38-44.	0.8	7
23	Avicennia marina maintains genetic structure whereas Rhizophora stylosa connects mangroves in a flooded, former inner sea (Vietnam). Estuarine, Coastal and Shelf Science, 2019, 222, 195-204.	0.9	11
24	Effect of salt solutions on coagulation performance of Moringa stenopetala and Maerua subcordata for turbid water treatment. Separation and Purification Technology, 2019, 221, 319-324.	3.9	30
25	Grazing and growth rate of a cyclopoid copepod fed with a phytoplankton diet constituted by a filamentous cyanobacterium. Hydrobiologia, 2019, 828, 213-227.	1.0	9
26	Coupling Extracts of Plant Coagulants With Solar Disinfection Showed a Complete Inactivation of Faecal Coliforms. Clean - Soil, Air, Water, 2019, 47, 1700450.	0.7	4
27	Outbreeding depression and breeding system evolution in small, remnant populations of Primula vulgaris: consequences for genetic rescue. Conservation Genetics, 2018, 19, 545-554.	0.8	32
28	Lagoons and saltwater wetlands getting more diversity: A molecular approach reveals cryptic lineages of a euryhaline submerged macrophyte (<i>Ruppia</i>). Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 370-382.	0.9	15
29	Competition between invasive Lemna minuta and native L. minor in indoor and field experiments. Hydrobiologia, 2018, 812, 57-65.	1.0	14
30	Geographical Distance and Large Rivers Shape Genetic Structure of Avicennia officinalis in the Highly Dynamic Sundarbans Mangrove Forest and Ganges Delta Region. Estuaries and Coasts, 2018, 41, 908-920.	1.0	13
31	Turbidity, Waterfowl Herbivory, and Propagule Banks Shape Submerged Aquatic Vegetation in Ponds. Frontiers in Plant Science, 2018, 9, 1514.	1.7	10
32	Migrant pool model of dispersal explains strong connectivity of Avicennia officinalis within Sundarban mangrove areas: Effect of fragmentation and replantation. Estuarine, Coastal and Shelf Science, 2018, 214, 38-47.	0.9	10
33	Isotropic and anisotropic processes influence fine-scale spatial genetic structure of a keystone tropical plant. AoB PLANTS, 2018, 10, plx076.	1.2	3
34	Inferring Connectivity Range in Submerged Aquatic Populations (Ruppia L.) Along European Coastal Lagoons From Genetic Imprint and Simulated Dispersal Trajectories. Frontiers in Plant Science, 2018, 9, 806.	1.7	18
35	Spatial and temporal distribution of submerged aquatic vegetation in a tropical coastal lagoon habitat in Viet Nam. Botanica Marina, 2018, 61, 213-224.	0.6	8
36	Clonal growth strategy, diversity and structure: A spatiotemporal response to sedimentation in tropical Cyperus papyrus swamps. PLoS ONE, 2018, 13, e0190810.	1.1	5

#	Article	IF	CITATIONS
37	Phytoplankton functional dynamics in a shallow polymictic tropical lake: the influence of emergent macrophytes. Hydrobiologia, 2017, 797, 69-86.	1.0	24
38	Hidden founders? Strong bottlenecks and fine-scale genetic structure in mangrove populations of the Cameroon Estuary complex. Hydrobiologia, 2017, 803, 189-207.	1.0	21
39	Emergent Macrophytes Support Zooplankton in a Shallow Tropical Lake: A Basis for Wetland Conservation. Environmental Management, 2017, 60, 1127-1138.	1.2	24
40	Clonal and genetic diversity of the threatened seagrass Halophila beccarii in a tropical lagoon: Resilience through short distance dispersal. Aquatic Botany, 2017, 142, 96-104.	0.8	20
41	Low interspecific pollen transfer between invasive aquatic Ludwigia grandiflora and native co-flowering plants. Biological Invasions, 2017, 19, 2913-2925.	1.2	2
42	Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia, 2017, 790, 93-108.	1.0	17
43	A Preliminary Evaluation of Locally Used Plant Coagulants for Household Water Treatment. Water Conservation Science and Engineering, 2016, 1, 95-102.	0.9	16
44	River Water Pollution Status and Water Policy Scenario in Ethiopia: Raising Awareness for Better Implementation in Developing Countries. Environmental Management, 2016, 58, 694-706.	1.2	66
45	Population genetic structure of the stony coral <i>Acropora tenuis</i> shows high but variable connectivity in East Africa. Journal of Biogeography, 2016, 43, 510-519.	1.4	29
46	Biomanipulation as a nature-based solution to reduce cyanobacterial blooms. Aquatic Ecology, 2016, 50, 461-483.	0.7	70
47	Contrasting Effects of Historical Sea Level Rise and Contemporary Ocean Currents on Regional Gene Flow of Rhizophora racemosa in Eastern Atlantic Mangroves. PLoS ONE, 2016, 11, e0150950.	1.1	35
48	Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran. PLoS ONE, 2016, 11, e0161889.	1.1	11
49	Perspectives for genetic rescue of the extremely fragmented Primula vulgaris populations in The Netherlands: reflecting the future of Belgian populations?. Plant Ecology and Evolution, 2015, 148, 329-334.	0.3	10
50	Strong bottlenecks, inbreeding and multiple hybridization of threatened European Ruppia maritima populations. Aquatic Botany, 2015, 125, 31-43.	0.8	21
51	Multiplexing 15 microsatellite loci for European primrose (Primula vulgaris). Conservation Genetics Resources, 2015, 7, 279-281.	0.4	7
52	Strong isolation by distance revealed among Cyperus papyrus populations in the Rift Valley lakes, Lake Victoria, and isolated wetlands of Kenya. Aquatic Botany, 2015, 121, 57-66.	0.8	10
53	Seagrass Radiation after Messinian Salinity Crisis Reflected by Strong Genetic Structuring and Out-of-Africa Scenario (Ruppiaceae). PLoS ONE, 2014, 9, e104264.	1.1	29
54	The Effect of Phosphorus Reduction and Competition on Invasive Lemnids: Life Traits and Nutrient Uptake. ISRN Botany, 2014, 2014, 1-9.	0.8	6

#	Article	IF	CITATIONS
55	Clonal diversity and spatial genetic structure of Potamogeton pectinatus in managed pond and river populations. Hydrobiologia, 2014, 737, 145-161.	1.0	14
56	Diversity and fine-scale spatial genetic structure of Cyperus papyrus populations in Lake Naivasha (Kenya) using microsatellite markers. Hydrobiologia, 2014, 737, 131-144.	1.0	15
57	Identification of total phosphate, submerged vegetation cover and zooplankton size thresholds for success of biomanipulation in peri-urban eutrophic ponds. Hydrobiologia, 2014, 737, 281-296.	1.0	7
58	A Wavelet Approach for Estimating Chlorophyll-A From Inland Waters With Reflectance Spectroscopy. IEEE Geoscience and Remote Sensing Letters, 2014, 11, 89-93.	1.4	14
59	Importance of seedling recruitment for regeneration and maintaining genetic diversity of Cyperus papyrus during drawdown in Lake Naivasha, Kenya. Aquatic Botany, 2014, 116, 93-102.	0.8	17
60	Validation of a quantitative method for estimating the indicator power of, diatoms for ecoregional river water quality assessment. Ecological Indicators, 2014, 37, 58-66.	2.6	9
61	Estimation of environmental optima and tolerances of diatoms using multifactor multiplicative modeling. Ecological Informatics, 2014, 19, 53-61.	2.3	4
62	Reprint of "Is the genetic structure of Mediterranean Ruppia shaped by bird-mediated dispersal or sea currents?― Aquatic Botany, 2014, 115, 45-53.	0.8	6
63	Does the surrounding matrix influence corridor effectiveness for pollen dispersal in farmland?. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 180-189.	1.1	12
64	Is the genetic structure of Mediterranean Ruppia shaped by bird-mediated dispersal or sea currents?. Aquatic Botany, 2013, 104, 176-184.	0.8	24
65	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2012–31 January 2013. Molecular Ecology Resources, 2013, 13, 546-549.	2.2	36
66	Stepping-stone populations in linear landscape elements increase pollen dispersal between urban forest fragments. Plant Ecology and Evolution, 2012, 145, 332-340.	0.3	41
67	Epilithic diatoms as indicators in tropical African rivers (Lake Victoria catchment). Hydrobiologia, 2012, 695, 343-360.	1.0	26
68	Strength of phytoplankton–nutrient relationship: evidence from 13 biomanipulated ponds. Hydrobiologia, 2012, 689, 147-159.	1.0	29
69	Classification trees as a tool for predicting cyanobacterial blooms. Hydrobiologia, 2012, 689, 131-146.	1.0	16
70	Stabilizing the clear-water state in eutrophic ponds after biomanipulation: submerged vegetation versus fish recolonization. Hydrobiologia, 2012, 689, 161-176.	1.0	29
71	Integrating local ecological knowledge and management practices of an isolated semi-arid papyrus swamp (Loboi, Kenya) into a wider conservation framework. Journal of Environmental Management, 2012, 93, 71-84.	3.8	32
72	Effects of harvesting Cyperus papyrus in undisturbed wetland, Lake Naivasha, Kenya. Hydrobiologia, 2012, 680, 135-148.	1.0	35

#	Article	IF	CITATIONS
73	Biomanipulation of hypereutrophic ponds: when it works and why it fails. Environmental Monitoring and Assessment, 2012, 184, 1517-1531.	1.3	45
74	Competition between Lemna minuta and Lemna minor at different nutrient concentrations. Aquatic Botany, 2011, 94, 158-164.	0.8	34
75	Competitive abilities of invasive Lagarosiphon major and native Ceratophyllum demersum in monocultures and mixed cultures in relation to experimental sediment dredging. Aquatic Botany, 2011, 95, 161-166.	0.8	30
76	Impact of three aquatic invasive species on native plants and macroinvertebrates in temperate ponds. Biological Invasions, 2011, 13, 2715-2726.	1.2	112
77	Fluorescent dye particles as pollen analogues for measuring pollen dispersal in an insect-pollinated forest herb. Oecologia, 2011, 165, 663-674.	0.9	59
78	Assessment of the risk of cyanobacterial bloom occurrence in urban ponds: probabilistic approach. Annales De Limnologie, 2010, 46, 121-133.	0.6	23
79	Comparative performance of invasive alien Eichhornia crassipes and native Ludwigia stolonifera under non-limiting nutrient conditions in Lake Naivasha, Kenya. Hydrobiologia, 2010, 656, 221-231.	1.0	10
80	Genetic differentiation of submerged plant populations and taxa between habitats. Hydrobiologia, 2010, 656, 15-27.	1.0	24
81	Microhabitat–200plankton relationship in extensive macrophyte vegetations of eutrophic clear-water ponds. Hydrobiologia, 2010, 656, 67-81.	1.0	37
82	Influence of submerged vegetation and fish abundance on water clarity in peri-urban eutrophic ponds. Hydrobiologia, 2010, 656, 255-267.	1.0	13
83	Do linear landscape elements in farmland act as biological corridors for pollen dispersal?. Journal of Ecology, 2010, 98, 178-187.	1.9	106
84	Pollen dispersal in an insect-pollinated wet meadow herb along an urban river. Landscape and Urban Planning, 2010, 95, 201-208.	3.4	42
85	Chloroplast sequences reveal a diversity gradient in the Mediterranean Ruppia cirrhosa species complex. Aquatic Botany, 2010, 93, 68-74.	0.8	26
86	Restoration potential of biomanipulation for eutrophic peri-urban ponds: the role of zooplankton size and submerged macrophyte cover. Hydrobiologia, 2009, 634, 125-135.	1.0	44
87	High diversity of Ruppia meadows in saline ponds and lakes of the western Mediterranean. Hydrobiologia, 2009, 634, 97-105.	1.0	21
88	Urban impact on ecological integrity of nearby rivers in developing countries: the Borkena River in highland Ethiopia. Environmental Monitoring and Assessment, 2009, 153, 461-476.	1.3	49
89	Comparative study of diatoms and macroinvertebrates as indicators of severe water pollution: Case study of the Kebena and Akaki rivers in Addis Ababa, Ethiopia. Ecological Indicators, 2009, 9, 381-392.	2.6	104
90	High diversity of Ruppia meadows in saline ponds and lakes of the western Mediterranean. , 2009, , 253-261.		0

#	Article	IF	CITATIONS
91	Genetic diversity in adult and seedling populations of Primula vulgaris in a fragmented agricultural landscape. Conservation Genetics, 2008, 9, 845-853.	0.8	63
92	PERMANENT GENETIC RESOURCES: Consensus primers of <i>cyp73</i> genes discriminate willow species and hybrids (<i>Salix</i> , Salicaceae). Molecular Ecology Resources, 2008, 8, 455-458.	2.2	8
93	Molecular ecology and biogeography of mangrove trees towards conceptual insights on gene flow and barriers: A review. Aquatic Botany, 2008, 89, 138-154.	0.8	97
94	Phytoplankton biomass and environmental factors over a gradient of clear to turbid peri-urban ponds. Aquatic Conservation: Marine and Freshwater Ecosystems, 2007, 17, 584-601.	0.9	31
95	Morph-specific differences inÂreproductive success inÂtheÂdistylous PrimulaÂveris inÂaÂcontext ofÂhabitat fragmentation. Acta Oecologica, 2006, 30, 426-433.	0.5	32
96	Within-population genetic variation in the distylous Primula veris: Does floral morph anisoplethy matter in fragmented habitats?. Perspectives in Plant Ecology, Evolution and Systematics, 2006, 7, 263-273.	1.1	16
97	Distribution of Epilithic Diatoms in Response to Environmental Conditions in an Urban Tropical Stream, Central Kenya. Biodiversity and Conservation, 2006, 15, 3267-3293.	1.2	52
98	The relationship between Callitriche L. clones and environmental variables using genotyping. Hydrobiologia, 2006, 570, 73-77.	1.0	4
99	A comparison of macrophyte indices in headwaters of rivers in Flanders (Belgium). Hydrobiologia, 2006, 570, 165-171.	1.0	8
100	Fineâ€scale genetic structure of the common <i>Primula elatior</i> (Primulaceae) at an early stage of population fragmentation. American Journal of Botany, 2006, 93, 1281-1288.	0.8	49
101	A comparison of macrophyte indices in headwaters of rivers in Flanders (Belgium). , 2006, , 165-171.		1
102	Clobal Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environmental Microbiology, 2005, 7, 969-980.	1.8	149
103	The fate of organic matter in a papyrus (Cyperus papyrusL.) dominated tropical wetland ecosystem in Nyanza Gulf (Lake Victoria, Kenya) inferred from 1´13C and 1´15N analysis. Isotopes in Environmental and Health Studies, 2005, 41, 379-390.	0.5	14
104	Genetic consequences of habitat fragmentation in an agricultural landscape on the common Primula veris, and comparison with its rare congener, P. vulgaris. Conservation Genetics, 2004, 5, 231-245.	0.8	84
105	Spatial genetic structure and reproductive success in fragmented and continuous populations ofPrimula vulgaris. Folia Geobotanica, 2003, 38, 239-254.	0.4	23
106	Commonness and Long-Term Survival in Fragmented Habitats: Primula elatior as a Study Case. Conservation Biology, 2002, 16, 1286-1295.	2.4	47
107	Title is missing!. Aquatic Ecology, 2001, 35, 183-194.	0.7	50
108	RAPD of controlled crosses and clones from the field suggests that hybrids are rare in the Salix alba–Salix fragilis complex. Heredity, 2000, 84, 555-563.	1.2	39

#	Article	IF	CITATIONS
109	Genetic and geographic variation of the mangrove tree Bruguiera in Sri Lanka. Aquatic Botany, 2000, 67, 131-141.	0.8	40
110	Title is missing!. Hydrobiologia, 1999, 415, 77-85.	1.0	0
111	Genetic differentiation between Bruguiera gymnorhiza and B. sexangula in Sri Lanka. Hydrobiologia, 1999, 413, 11-16.	1.0	7
112	Electrophoretic polymorphism and divergence in Najas marina L. (Najadaceae): Molecular markers for individuals, hybrids, cytodemes, lower taxa, ecodemes and conservation of genetic diversity. Aquatic Botany, 1989, 33, 301-380.	0.8	26
113	Ethnomedicinal Knowledge on Water Purification in Selected Rural Areas of Ethiopia. Ethnobotany Research and Applications, 0, 14, 393-403.	0.3	1