Guohua Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4763494/publications.pdf

Version: 2024-02-01

159585 3,053 55 30 h-index citations papers

g-index 55 55 55 3477 all docs docs citations times ranked citing authors

161849

54

#	Article	IF	CITATIONS
1	Recent advances in selective catalytic reduction of NO _x by carbon monoxide for flue gas cleaning process: a review. Catalysis Reviews - Science and Engineering, 2021, 63, 68-119.	12.9	68
2	The influence of support composition on the activity of Cu:Ce catalysts for selective catalytic reduction of NO by CO in the presence of excess oxygen. New Journal of Chemistry, 2020, 44, 709-718.	2.8	16
3	Heterogeneous catalysis in multiâ€stage fluidized bed reactors: From fundamental study to industrial application. Canadian Journal of Chemical Engineering, 2019, 97, 636-644.	1.7	10
4	Ionic liquids-coordinated Au catalysts for acetylene hydrochlorination: DFT approach towards reaction mechanism and adsorption energy. Catalysis Science and Technology, 2018, 8, 1176-1182.	4.1	24
5	Green production of PVC from laboratory to industrialization: State-of-the-art review of heterogeneous non-mercury catalysts for acetylene hydrochlorination. Journal of Industrial and Engineering Chemistry, 2018, 65, 13-25.	5.8	49
6	Preparation and properties of polyethylene-coated terbium complex/calcium carbonate composite fluorescent material. Journal of Luminescence, 2018, 203, 292-298.	3.1	3
7	Low-Temperature Selective Catalytic Reduction of NO by CO in the Presence of O ₂ over Cu:Ce Catalysts Supported by Multiwalled Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2018, 57, 8871-8883.	3.7	58
8	Novel hierarchical Ni/MgO catalyst for highly efficient CO methanation in a fluidized bed reactor. AICHE Journal, 2017, 63, 2141-2152.	3.6	20
9	The Kinetics Model and Fixed Bed Reactor Simulation of Cu Catalyst for Acetylene Hydrochlorination. International Journal of Chemical Reactor Engineering, 2017, 15, .	1.1	2
10	Mesoporous MgO synthesized by a homogeneous-hydrothermal method and its catalytic performance on gas-phase acetone condensation at low temperatures. Catalysis Communications, 2016, 74, 39-42.	3.3	29
11	A ligand coordination approach for high reaction stability of an Au–Cu bimetallic carbon-based catalyst in the acetylene hydrochlorination process. Catalysis Science and Technology, 2016, 6, 1357-1366.	4.1	46
12	Poly(p-phenylene terephthalamide)/carbon nanotube composite membrane: Preparation via polyanion solution method and mechanical property enhancement. Composites Science and Technology, 2015, 118, 135-140.	7.8	15
13	A low content Au-based catalyst for hydrochlorination of C ₂ H ₂ and its industrial scale-up for future PVC processes. Green Chemistry, 2015, 17, 356-364.	9.0	104
14	NO reduction by CO over a Fe-based catalyst in FCC regenerator conditions. Chemical Engineering Journal, 2014, 255, 126-133.	12.7	51
15	Reactivity enhancement of N-CNTs in green catalysis of C ₂ H ₂ hydrochlorination by a Cu catalyst. RSC Advances, 2014, 4, 7766-7769.	3.6	68
16	Synergistic Gold–Bismuth Catalysis for Non-Mercury Hydrochlorination of Acetylene to Vinyl Chloride Monomer. ACS Catalysis, 2014, 4, 3112-3116.	11.2	109
17	Continuous vinyl chloride monomer production by acetylene hydrochlorination on Hg-free bismuth catalyst: From lab-scale catalyst characterization, catalytic evaluation to a pilot-scale trial by circulating regeneration in coupled fluidized beds. Fuel Processing Technology, 2013, 108, 12-18.	7.2	81
18	Efficient production of Mg2Si in a fluidized-bed reactor. Powder Technology, 2012, 229, 152-161.	4.2	6

#	Article	IF	CITATIONS
19	Experimental and modeling analysis of NO reduction by CO for a FCC regeneration process. Chemical Engineering Journal, 2012, 184, 168-175.	12.7	33
20	A multistage NOx reduction process for a FCC regenerator. Chemical Engineering Journal, 2011, 173, 296-302.	12.7	19
21	Coupled process of plastics pyrolysis and chemical vapor deposition for controllable synthesis of vertically aligned carbon nanotube arrays. Applied Physics A: Materials Science and Processing, 2010, 100, 533-540.	2.3	45
22	Large area growth of aligned CNT arrays on spheres: Cost performance and product control. Materials Letters, 2009, 63, 84-87.	2.6	23
23	Gas-Phase Catalytic Hydrochlorination of Acetylene in a Two-Stage Fluidized-Bed Reactor. Industrial & Lamp; Engineering Chemistry Research, 2009, 48, 128-133.	3.7	61
24	In situ growth of carbon nanotubes on inorganic fibers with different surface properties. Materials Chemistry and Physics, 2008, 107, 317-321.	4.0	30
25	The effect of carbon nanotubes microstructures on reinforcing properties of SWNTs/alumina composite. Materials Research Bulletin, 2008, 43, 2806-2809.	5.2	31
26	A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness. Materials Letters, 2008, 62, 641-644.	2.6	112
27	Growth Deceleration of Vertically Aligned Carbon Nanotube Arrays:  Catalyst Deactivation or Feedstock Diffusion Controlled?. Journal of Physical Chemistry C, 2008, 112, 4892-4896.	3.1	102
28	Study on the FCC Process of a Novel Riserâ^'Downer Coupling Reactor (III): Industrial Trial and CFD Modeling. Industrial & Engineering Chemistry Research, 2008, 47, 8582-8587.	3.7	15
29	FEW WALLED CARBON NANOTUBE PRODUCTION IN LARGE-SCALE BY NANO-AGGLOMERATE FLUIDIZED-BED PROCESS. Nano, 2008, 03, 45-50.	1.0	18
30	Temperature effect on the substrate selectivity of carbon nanotube growth in floating chemical vapor deposition. Nanotechnology, 2007, 18, 415703.	2.6	29
31	Gas Flow-Assisted Alignment of Super Long Electrospun Nanofibers. Journal of Nanoscience and Nanotechnology, 2007, 7, 2667-2673.	0.9	17
32	Porous and Lamella-like Fe/MgO Catalysts Prepared under Hydrothermal Conditions for High-Yield Synthesis of Double-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 1969-1975.	3.1	47
33	Preparation of a carbon nanotube film by ink-jet printing. Carbon, 2007, 45, 2712-2716.	10.3	43
34	Improvement of Fe/MgO Catalysts by Calcination for the Growth of Single- and Double-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 1201-1205.	2.6	54
35	Rings of triple-walled carbon nanotube bundles. Applied Physics Letters, 2006, 89, 223106.	3.3	22
36	Growth of branch carbon nanotubes on carbon nanotubes as support. Diamond and Related Materials, 2006, 15, 1447-1451.	3.9	23

#	Article	IF	Citations
37	Effect of the reaction atmosphere on the diameter of single-walled carbon nanotubes produced by chemical vapor deposition. Carbon, 2006, 44, 1706-1712.	10.3	35
38	Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Composites Science and Technology, 2006, 66, 1022-1029.	7.8	148
39	Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 132, 85-89.	3.5	306
40	Hydrodynamics and gas mixing in a carbon nanotube agglomerate fluidized bed. AICHE Journal, 2006, 52, 4110-4123.	3.6	37
41	Elastic deformation of multiwalled carbon nanotubes in electrospun MWCNTs–PEO and MWCNTs–PVA nanofibers. Polymer, 2005, 46, 12689-12695.	3.8	81
42	Online BET analysis of single-wall carbon nanotube growth and its effect on catalyst reactivation. Carbon, 2005, 43, 1439-1444.	10.3	22
43	Fabrication of ordered single-walled carbon nanotube preforms. Carbon, 2005, 43, 2232-2234.	10.3	4
44	Gaseous catalytic hydrogenation of nitrobenzene to aniline in a two-stage fluidized bed reactor. Applied Catalysis A: General, 2005, 286, 30-35.	4.3	86
45	Fabrication and characterization of multi-walled carbon nanotubes-based ink. Journal of Materials Science, 2005, 40, 5075-5077.	3.7	53
46	Effect of adding nickel to iron–alumina catalysts on the morphology of as-grown carbon nanotubes. Carbon, 2003, 41, 2487-2493.	10.3	46
47	99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon, 2003, 41, 2585-2590.	10.3	254
48	The evaluation of the gross defects of carbon nanotubes in a continuous CVD process. Carbon, 2003, 41, 2613-2617.	10.3	66
49	Production of high quality single-walled carbon nanotubes in a nano-agglomerated fluidized bed reactor. Materials Research Society Symposia Proceedings, 2003, 785, 941.	0.1	0
50	Synthesis of carbon-encapsulated magnetic nanoparticles by a grain-boundary-reaction. Materials Research Society Symposia Proceedings, 2003, 776, 5141.	0.1	1
51	Catalysts effect on morphology of carbon nanotubes prepared by catalytic chemical vapor deposition in a nano-agglomerate bed. Physica B: Condensed Matter, 2002, 323, 314-317.	2.7	37
52	The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chemical Physics Letters, 2002, 364, 568-572.	2.6	275
53	Catalytic degradation of high density polyethylene and polypropylene into liquid fuel in a powder-particle fluidized bed. Polymer Degradation and Stability, 2000, 70, 97-102.	5.8	109
54	An Adaptive Sorbent for the Combined Desulfurization/Denitration Process Using a Powder-Particle Fluidized Bed. Industrial & Engineering Chemistry Research, 2000, 39, 2190-2198.	3.7	7

#	Article	IF	CITATIONS
55	Study on Jet Flow From Two Vertical Nozzles in a 500 mm I. D. Semi-Circular Fluidized Bed. Chemical Engineering and Technology, 1999, 22, 247-251.	1.5	3