Yu-hong Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4763344/publications.pdf

Version: 2024-02-01

54	1,919	22	42
papers	citations	h-index	g-index
67	67	67	2331
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)–H trifluoromethylation. Nature Chemistry, 2020, 12, 459-467.	6.6	226
2	Theory and Modeling of Asymmetric Catalytic Reactions. Accounts of Chemical Research, 2016, 49, 750-762.	7.6	149
3	Computational prediction of chemical reactions: current status and outlook. Drug Discovery Today, 2018, 23, 1203-1218.	3.2	126
4	Dielsâ" Alder Exo Selectivity in Terminal-Substituted Dienes and Dienophiles: Experimental Discoveries and Computational Explanations. Journal of the American Chemical Society, 2009, 131, 1947-1957.	6.6	103
5	Mechanisms and Origins of Periselectivity of the Ambimodal [6 + 4] Cycloadditions of Tropone to Dimethylfulvene. Journal of the American Chemical Society, 2017, 139, 8251-8258.	6.6	87
6	Electrochemical Synthesis of Hindered Primary and Secondary Amines via Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2020, 142, 468-478.	6.6	86
7	Synthesis of Sterically Hindered Primary Amines by Concurrent Tandem Photoredox Catalysis. Journal of the American Chemical Society, 2020, 142, 987-998.	6.6	83
8	Origins of Stereoselectivity in Intramolecular Aldol Reactions Catalyzed by Cinchona Amines. Journal of the American Chemical Society, 2015, 137, 2116-2127.	6.6	74
9	How Cinchona Alkaloid-Derived Primary Amines Control Asymmetric Electrophilic Fluorination of Cyclic Ketones. Journal of the American Chemical Society, 2014, 136, 9556-9559.	6.6	64
10	Hydrophobic Substituent Effects on Proline Catalysis of Aldol Reactions in Water. Journal of Organic Chemistry, 2012, 77, 4784-4792.	1.7	60
11	Photomediated ring contraction of saturated heterocycles. Science, 2021, 373, 1004-1012.	6.0	58
12	Enamine Carboxylates as Stereodetermining Intermediates in Prolinate Catalysis. Organic Letters, 2011, 13, 5644-5647.	2.4	53
13	Stereoselectivities of Histidine-Catalyzed Asymmetric Aldol Additions and Contrasts with Proline Catalysis: A Quantum Mechanical Analysis. Journal of the American Chemical Society, 2012, 134, 6286-6295.	6.6	52
14	Pericyclic Cascade with Chirality Transfer: Reaction Pathway and Origin of Enantioselectivity of the Heteroâ€Claisen Approach to Oxindoles. Angewandte Chemie - International Edition, 2011, 50, 11478-11482.	7.2	45
15	A Concise Synthesis of Enantioenriched Fluorinated Carbocycles. Angewandte Chemie - International Edition, 2007, 46, 5106-5110.	7.2	43
16	Origins of the Stereoselectivity in a Thiourea–Primary Amine-Catalyzed Nazarov Cyclization. Journal of the American Chemical Society, 2015, 137, 13191-13199.	6.6	43
17	Recent progress in the use of fluoroorganic compounds in pericyclic reactions. Tetrahedron, 2009, 65, 9905-9933.	1.0	40
18	Discovery of Amino-cyclobutarene-derived Indoleamine-2,3-dioxygenase 1 (IDO1) Inhibitors for Cancer Immunotherapy. ACS Medicinal Chemistry Letters, 2019, 10, 1530-1536.	1.3	38

#	Article	IF	Citations
19	An asymmetric pericyclic cascade approach to 3-alkyl-3-aryloxindoles: generality, applications and mechanistic investigations. Organic and Biomolecular Chemistry, 2015, 13, 1807-1817.	1.5	30
20	Model for the Enantioselectivity of Asymmetric Intramolecular Alkylations by Bis-Quaternized Cinchona Alkaloid-Derived Catalysts. Journal of Organic Chemistry, 2017, 82, 8645-8650.	1.7	29
21	Organocatalysis: Fundamentals and Comparisons to Metal and Enzyme Catalysis. Catalysts, 2016, 6, 128.	1.6	28
22	Applications of Quantum Chemistry in Pharmaceutical Process Development: Current State and Opportunities. Organic Process Research and Development, 2020, 24, 1496-1507.	1.3	25
23	Late-Stage Carbon Isotope Exchange of Aryl Nitriles through Ni-Catalyzed C–CN Bond Activation. Journal of the American Chemical Society, 2021, 143, 4817-4823.	6.6	25
24	Kilo-Scale Electrochemical Oxidation of a Thioether to a Sulfone: A Workflow for Scaling up Electrosynthesis. Organic Process Research and Development, 2022, 26, 2423-2437.	1.3	25
25	Transition States of Vicinal Diamine-Catalyzed Aldol Reactions. Journal of the American Chemical Society, 2016, 138, 503-506.	6.6	24
26	Metal- and Acid-Free C–H Formylation of Nitrogen Heterocycles: Using Trioxane as an Aldehyde Equivalent Enabled by an Organic-Soluble Oxidant. Organic Letters, 2018, 20, 5752-5756.	2.4	24
27	Catalytic Effects of Ammonium and Sulfonium Salts and External Electric Fields on Aza-Diels–Alder Reactions. Journal of Organic Chemistry, 2020, 85, 2618-2625.	1.7	23
28	Manufacturing Process Development for Belzutifan, Part 6: Ensuring Scalability for a Deoxyfluorination Reaction. Organic Process Research and Development, 2022, 26, 551-559.	1.3	19
29	Efficient Aliphatic Hydrogen-Isotope Exchange with Tritium Gas through the Merger of Photoredox and Hydrogenation Catalysts. Journal of the American Chemical Society, 2022, 144, 5010-5022.	6.6	18
30	Quinine-Promoted, Enantioselective Boron-Tethered Diels–Alder Reaction by Anomeric Control of Transition-State Conformation. Journal of Organic Chemistry, 2018, 83, 5756-5765.	1.7	15
31	Theoretical Study of Diastereoselective NHC-Catalyzed Cross-Benzoin Reactions between Furfural and <i>N</i> -Boc-Protected α-Amino Aldehydes. Journal of Organic Chemistry, 2019, 84, 13565-13571.	1.7	15
32	A Modular and Diastereoselective $5+1$ Cyclization Approach to N-(Hetero)Aryl Piperidines. Journal of the American Chemical Society, 2020, 142, 726-732.	6.6	15
33	One-Step Synthesis of 2-Fluoroadenine Using Hydrogen Fluoride Pyridine in a Continuous Flow Operation. Organic Process Research and Development, 2019, 23, 1522-1528.	1.3	14
34	New Mechanism for Cinchona Alkaloid-Catalysis Allows for an Efficient Thiophosphorylation Reaction. Journal of the American Chemical Society, 2020, 142, 20021-20029.	6.6	14
35	Fluorine as a Regiocontrol Element in the Ring Opening of Bicyclic Aziridiniums. Helvetica Chimica Acta, 2012, 95, 2265-2277.	1.0	13
36	Diastereoselective FeCl ₃ ·6H ₂ O/NaBH ₄ Reduction of Oxime Ether for the Synthesis of β-Lactamase Inhibitor Relebactam. Journal of Organic Chemistry, 2020, 85, 994-1000.	1.7	13

#	Article	IF	CITATIONS
37	Origins of Stereoselectivity of Chiral Vicinal Diamine-Catalyzed Aldol Reactions. Journal of Organic Chemistry, 2016, 81, 12408-12415.	1.7	12
38	Development of a Green and Sustainable Manufacturing Process for Gefapixant Citrate (MK-7264) Part 3: Development of a One-Pot Formylation–Cyclization Sequence to the Diaminopyrimidine Core. Organic Process Research and Development, 2020, 24, 2462-2477.	1.3	10
39	Synthesis of Bridged Bicyclic Amines by Intramolecular Amination of Remote C–H Bonds: Synergistic Activation by Light and Heat. Organic Letters, 2020, 22, 6578-6583.	2.4	10
40	Origins of Stereoselectivity in Chiral Aminoalcohol Catalysis of Oxyallyl Cation–Indole Reactions. Organic Letters, 2017, 19, 5685-5688.	2.4	9
41	Unequivocal structure confirmation of a breitfussin analog by anisotropic NMR measurements. Chemical Science, 2020, 11, 12081-12088.	3.7	9
42	Boron Carboxylate Catalysis of Homoallylboration. Journal of Organic Chemistry, 2014, 79, 4277-4284.	1.7	8
43	Assembly of Complex Macrocycles by Incrementally Amalgamating Unprotected Peptides with a Designed Four-Armed Insert. Journal of Organic Chemistry, 2018, 83, 3090-3108.	1.7	8
44	A Diastereoselective Method for the Construction of <i>syn</i> -2′-Deoxy-2′-fluoronucleosides. Organic Letters, 2022, 24, 4860-4864.	2.4	8
45	Origins of Stereoselectivity of Enamine–Iminium-Activated Nazarov Cyclizations by Vicinal Diamines. Journal of Organic Chemistry, 2017, 82, 8186-8190.	1.7	7
46	Mechanisms and Conformational Control of $(4 + 2)$ and $(2 + 2)$ Cycloadditions of Dienes to Keteniminium Cations. Journal of Organic Chemistry, 2020, 85, 2597-2606.	1.7	7
47	Development of a Flexible and Robust Synthesis of Tetrahydrofuro[3,4- <i>b</i> jfuran Nucleoside Analogues. Journal of Organic Chemistry, 2021, 86, 5142-5151.	1.7	7
48	Organocatalytic Conversion of Nucleosides to Furanoid Glycals. Journal of Organic Chemistry, 2021, 86, 7529-7536.	1.7	6
49	Selective Formation of Functionalized α-Quaternary Malononitriles toward 5,5-Disubstituted Pyrrolopyrimidinones. Organic Letters, 2017, 19, 4448-4451.	2.4	4
50	Process Safety Considerations for the Supply of a High-Energy Oxadiazole IDO1-Selective Inhibitor. Organic Process Research and Development, 2019, 23, 1178-1190.	1.3	4
51	Development of a Stereoselective Synthesis of $(1 < i > R < i > , 4 < i > R < i >)$ - and $(1 < i > S < i > , 4 < i > S < i >)$ -2-Oxa-5-azabicyclo [2.2.2] octane. Organic Process Research and Development, 2022, 26, 640-647.	1.3	4
52	Selective 1,4-Addition of Organolithiums to Maleate Monoesters with Application for a Short Efficient Route to Azaindanones. Synlett, 2021, 32, 192-196.	1.0	3
53	Diastereoselective Fluorination of Silylated 1,2-Oxazines to Access Fluorinated N,O-Heterocycles. Synlett, 2007, 2007, 3022-3026.	1.0	2
54	Photoredox-Catalyzed Giese Reactions: Decarboxylative Additions to Cyclic Vinylogous Amides and Esters. Molecules, 2022, 27, 417.	1.7	0