
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4763255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry, 2016, 210, 402-414.	4.2	529
2	Kaempferol and inflammation: From chemistry to medicine. Pharmacological Research, 2015, 99, 1-10.	3.1	417
3	Genistein and Cancer: Current Status, Challenges, and Future Directions. Advances in Nutrition, 2015, 6, 408-419.	2.9	405
4	Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological Research, 2017, 196, 44-68.	2.5	402
5	Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Critical Reviews in Microbiology, 2017, 43, 668-689.	2.7	373
6	Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Research Reviews, 2017, 36, 11-19.	5.0	350
7	Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Research Bulletin, 2015, 119, 1-11.	1.4	317
8	Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology Advances, 2020, 38, 107316.	6.0	307
9	Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chemistry, 2015, 173, 339-347.	4.2	251
10	Antibacterial Effects of Cinnamon: From Farm to Food, Cosmetic and Pharmaceutical Industries. Nutrients, 2015, 7, 7729-7748.	1.7	241
11	Role of quercetin as an alternative for obesity treatment: You are what you eat!. Food Chemistry, 2015, 179, 305-310.	4.2	239
12	Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials, 2017, 10, 947.	1.3	194
13	Understanding genistein in cancer: The "good―and the "bad―effects: A review. Food Chemistry, 2016, 196, 589-600.	4.2	185
14	Quercetin and the mitochondria: A mechanistic view. Biotechnology Advances, 2016, 34, 532-549.	6.0	181
15	Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention. Pharmacological Research, 2018, 128, 366-375.	3.1	167
16	Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomedicine and Pharmacotherapy, 2016, 84, 892-908.	2.5	165
17	Berberine and neurodegeneration: A review of literature. Pharmacological Reports, 2015, 67, 970-979.	1.5	161
18	Molecular targets of curcumin for cancer therapy: an updated review. Tumor Biology, 2016, 37, 13017-13028.	0.8	157

2

#	Article	IF	CITATIONS
19	Curcumin and Liver Disease: from Chemistry to Medicine. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 62-77.	5.9	154
20	Neuroprotective effects of chrysin: From chemistry to medicine. Neurochemistry International, 2015, 90, 224-231.	1.9	150
21	Flavonoids and platelet aggregation: A brief review. European Journal of Pharmacology, 2017, 807, 91-101.	1.7	149
22	The effects of baicalein and baicalin on mitochondrial function and dynamics: A review. Pharmacological Research, 2015, 100, 296-308.	3.1	147
23	Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 727-745.	1.1	144
24	Resveratrol and Alzheimer's Disease: Mechanistic Insights. Molecular Neurobiology, 2017, 54, 2622-2635.	1.9	140
25	Nrf2 as regulator of innate immunity: A molecular Swiss army knife!. Biotechnology Advances, 2018, 36, 358-370.	6.0	137
26	Apigenin as neuroprotective agent: Of mice and men. Pharmacological Research, 2018, 128, 359-365.	3.1	135
27	Epigallocatechin gallate and mitochondria—A story of life and death. Pharmacological Research, 2016, 104, 70-85.	3.1	133
28	Hepatoprotective effect of quercetin: From chemistry to medicine. Food and Chemical Toxicology, 2017, 108, 365-374.	1.8	132
29	Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Critical Reviews in Food Science and Nutrition, 2018, 58, 1391-1405.	5.4	129
30	Omega-3 polyunsaturated fatty acids and cancer: lessons learned from clinical trials. Cancer and Metastasis Reviews, 2015, 34, 359-380.	2.7	118
31	Cinsenoside Rb1 as a neuroprotective agent: A review. Brain Research Bulletin, 2016, 125, 30-43.	1.4	117
32	Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine. Nutrients, 2017, 9, 1111.	1.7	113
33	Molecular mechanisms underlying anticancer effects of myricetin. Life Sciences, 2015, 142, 19-25.	2.0	111
34	Neuroprotective Effects of Citrus Fruit-Derived Flavonoids, Nobiletin and Tangeretin in Alzheimer's and Parkinson's Disease. CNS and Neurological Disorders - Drug Targets, 2017, 16, 387-397.	0.8	101
35	Anti-inflammatory effects of Melatonin: A mechanistic review. Critical Reviews in Food Science and Nutrition, 2019, 59, S4-S16.	5.4	100
36	Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy. International Journal of Molecular Sciences, 2017, 18, 643.	1.8	97

#	Article	IF	CITATIONS
37	Natural products, micronutrients, and nutraceuticals for the treatment of depression: A short review. Nutritional Neuroscience, 2017, 20, 180-194.	1.5	86
38	Ginsenoside Rd and ischemic stroke; a short review of literatures. Journal of Ginseng Research, 2015, 39, 299-303.	3.0	83
39	Chlorogenic Acid and Mental Diseases: From Chemistry to Medicine. Current Neuropharmacology, 2017, 15, 471-479.	1.4	82
40	Curcumin, mitochondrial biogenesis, and mitophagy: Exploring recent data and indicating future needs. Biotechnology Advances, 2016, 34, 813-826.	6.0	79
41	Oral microbiota and Alzheimer's disease: Do all roads lead to Rome?. Pharmacological Research, 2020, 151, 104582.	3.1	79
42	Therapeutic role of sirtuins in neurodegenerative disease and their modulation by polyphenols. Neuroscience and Biobehavioral Reviews, 2017, 73, 39-47.	2.9	77
43	Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacological Research, 2020, 152, 104626.	3.1	77
44	Protective effect of quercetin against sodium fluoride induced oxidative stress in rat's heart. Food and Function, 2012, 3, 437.	2.1	75
45	Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer. Seminars in Cancer Biology, 2017, 46, 146-157.	4.3	71
46	Rutin as Neuroprotective Agent: From Bench to Bedside. Current Medicinal Chemistry, 2019, 26, 5152-5164.	1.2	70
47	Neuroprotective Effects of Ginkgolide B Against Ischemic Stroke: A Review of Current Literature. Current Topics in Medicinal Chemistry, 2015, 15, 2222-2232.	1.0	70
48	Polyphenolic Composition of Crataegus monogyna Jacq.: From Chemistry to Medical Applications. Nutrients, 2015, 7, 7708-7728.	1.7	69
49	The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: mechanisms, synergies and bio-inspired anti-infective materials. Biofouling, 2018, 34, 630-656.	0.8	69
50	<i>Rhodiola rosea</i> L. and Alzheimer's Disease: From Farm to Pharmacy. Phytotherapy Research, 2016, 30, 532-539.	2.8	68
51	Blessings in disguise: a review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium. DARU, Journal of Pharmaceutical Sciences, 2015, 23, 53.	0.9	67
52	Health effects of phloretin: from chemistry to medicine. Phytochemistry Reviews, 2017, 16, 527-533.	3.1	66
53	Nrf2 as molecular target for polyphenols: A novel therapeutic strategy in diabetic retinopathy. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 293-312.	2.7	65
54	Anthocyanins in the Management of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Frontiers in Pharmacology, 2018, 9, 1310.	1.6	65

#	Article	IF	CITATIONS
55	Down syndrome: Neurobiological alterations and therapeutic targets. Neuroscience and Biobehavioral Reviews, 2019, 98, 234-255.	2.9	63
56	Molecular and Therapeutic Targets of Genistein in Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 7028-7041.	1.9	61
57	Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacological Research, 2019, 141, 466-480.	3.1	60
58	Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System. Nutrients, 2016, 8, 248.	1.7	58
59	Targeting mTOR signaling by polyphenols: A new therapeutic target for ageing. Ageing Research Reviews, 2016, 31, 55-66.	5.0	58
60	Protective Role of Gallic Acid on Sodium Fluoride Induced Oxidative Stress in Rat Brain. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 73-77.	1.3	57
61	Antidepressiveâ€like effects and antioxidant activity of green tea and GABA green tea in a mouse model of postâ€stroke depression. Molecular Nutrition and Food Research, 2016, 60, 566-579.	1.5	57
62	<scp>N</scp> europrotective effects of honokiol: from chemistry to medicine. BioFactors, 2017, 43, 760-769.	2.6	57
63	Oleuropein and Cancer Chemoprevention: The Link is Hot. Molecules, 2017, 22, 705.	1.7	57
64	Hypotensive effects of genistein: From chemistry to medicine. Chemico-Biological Interactions, 2017, 268, 37-46.	1.7	56
65	Regulation of autophagy by polyphenols: Paving the road for treatment of neurodegeneration. Biotechnology Advances, 2018, 36, 1768-1778.	6.0	56
66	Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Natural Product Reports, 2021, 38, 1282-1329.	5.2	56
67	Whole-cell biocatalytic, enzymatic and green chemistry methods for the production of resveratrol and its derivatives. Biotechnology Advances, 2020, 39, 107461.	6.0	55
68	Map kinase signaling as therapeutic target for neurodegeneration. Pharmacological Research, 2020, 160, 105090.	3.1	54
69	Endoplasmic reticulum as a potential therapeutic target for covid-19 infection management?. European Journal of Pharmacology, 2020, 882, 173288.	1.7	54
70	Two likely targets for the anti-cancer effect of indole derivatives from cruciferous vegetables: PI3K/Akt/mTOR signalling pathway and the aryl hydrocarbon receptor. Seminars in Cancer Biology, 2017, 46, 132-137.	4.3	53
71	Phosphodiesterase inhibitors say NO to Alzheimer's disease. Food and Chemical Toxicology, 2019, 134, 110822.	1.8	52
72	Pharmacological Effects of <i>Capparis spinosa</i> L Phytotherapy Research, 2016, 30, 1733-1744.	2.8	51

#	Article	IF	CITATIONS
73	Lutein and cataract: from bench to bedside. Critical Reviews in Biotechnology, 2016, 36, 829-839.	5.1	50
74	Cytoprotective Effects of Curcumin on Sodium Fluoride-Induced Intoxication in Rat Erythrocytes. Bulletin of Environmental Contamination and Toxicology, 2012, 88, 486-490.	1.3	49
75	Epigallocatechin-3-Gallate, a Promising Molecule for Parkinson's Disease?. Rejuvenation Research, 2015, 18, 257-269.	0.9	48
76	Natural products, PGC-1 , and Duchenne muscular dystrophy. Acta Pharmaceutica Sinica B, 2020, 10, 734-745.	5.7	48
77	Neuroprotective Effects of Quercetin: From Chemistry to Medicine. CNS and Neurological Disorders - Drug Targets, 2016, 15, 964-975.	0.8	48
78	Engineering stilbene metabolic pathways in microbial cells. Biotechnology Advances, 2018, 36, 2264-2283.	6.0	47
79	Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. Pharmacological Research, 2019, 148, 104458.	3.1	47
80	Should We Try SARS-CoV-2 Helicase Inhibitors for COVID-19 Therapy?. Archives of Medical Research, 2020, 51, 733-735.	1.5	47
81	Targeting signal transducers and activators of transcription (STAT) in human cancer by dietary polyphenolic antioxidants. Biochimie, 2017, 142, 63-79.	1.3	46
82	Novel therapeutic strategies for stroke: The role of autophagy. Critical Reviews in Clinical Laboratory Sciences, 2019, 56, 182-199.	2.7	40
83	Targeting epigenetics in cancer: therapeutic potential of flavonoids. Critical Reviews in Food Science and Nutrition, 2021, 61, 1616-1639.	5.4	38
84	Targeting ubiquitin-proteasome pathway by natural, in particular polyphenols, anticancer agents: Lessons learned from clinical trials. Cancer Letters, 2018, 434, 101-113.	3.2	36
85	Curcumin and Melanoma: From Chemistry to Medicine. Nutrition and Cancer, 2018, 70, 164-175.	0.9	35
86	The water extract of tutsan (Hypericum androsaemum L.) red berries exerts antidepressive-like effects and in vivo antioxidant activity in a mouse model of post-stroke depression. Biomedicine and Pharmacotherapy, 2018, 99, 290-298.	2.5	33
87	Daidzein and its Effects on Brain. Current Medicinal Chemistry, 2017, 24, 365-375.	1.2	33
88	Zeaxanthin and ocular health, from bench to bedside. Fìtoterapìâ, 2016, 109, 58-66.	1.1	32
89	Possible use of the mucolytic drug, bromhexine hydrochloride, as a prophylactic agent against SARS-CoV-2 infection based on its action on the Transmembrane Serine Protease 2. Pharmacological Research, 2020, 157, 104853.	3.1	32
90	Improvement of Antioxidant Defences and Mood Status by Oral GABA Tea Administration in a Mouse Model of Post-Stroke Depression. Nutrients, 2017, 9, 446.	1.7	31

#	Article	IF	CITATIONS
91	Genus Sideritis, section Empedoclia in southeastern Europe and Turkey – studies in ethnopharmacology and recent progress of biological activities. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 407-421.	0.9	31
92	Mitigating role of quercetin against sodium fluoride-induced oxidative stress in the rat brain. Pharmaceutical Biology, 2012, 50, 1380-1383.	1.3	28
93	Neuroprotective Effects of Methyl-3-O-methyl gallate Against Sodium Fluoride-Induced Oxidative Stress in the Brain of Rats. Cellular and Molecular Neurobiology, 2013, 33, 261-267.	1.7	28
94	A focus on resveratrol and ocular problems, especially cataract: From chemistry to medical uses and clinical relevance. Biomedicine and Pharmacotherapy, 2017, 86, 232-241.	2.5	26
95	Targeting STATs in neuroinflammation: The road less traveled!. Pharmacological Research, 2019, 141, 73-84.	3.1	26
96	<i>In Vitro</i> Antioxidant and Antihemolytic Activities of Hydroalcoholic Extracts of <i>Allium scabriscapum</i> Boiss. & Ky. Aerial Parts and Bulbs. International Journal of Food Properties, 2013, 16, 713-722.	1.3	25
97	Targeting mTORs by omega-3 fatty acids: A possible novel therapeutic strategy for neurodegeneration?. Pharmacological Research, 2018, 135, 37-48.	3.1	24
98	Antidepressive effects of a chemically characterized maqui berry extract (Aristotelia chilensis) Tj ETQq0 0 0 rgBT 434-443.	7 /Overlock 1.8	2 10 Tf 50 467 24
99	The neuroprotective effects of polyphenols, their role in innate immunity and the interplay with the microbiota. Neuroscience and Biobehavioral Reviews, 2021, 128, 437-453.	2.9	24
100	Neuroprotective effects of paeoniflorin in neurodegenerative diseases of the central nervous system. Phytochemistry Reviews, 2017, 16, 1173-1181.	3.1	23
101	Biological Activities of Freshwater Algae, <i>Spirogyra singularis</i> Nordstedt. Journal of Aquatic Food Product Technology, 2013, 22, 58-65.	0.6	22
102	A Mini Review on the Chemistry and Neuroprotective Effects of Silymarin. Current Drug Targets, 2017, 18, 1529-1536.	1.0	22
103	Resveratrol and cyclodextrins, an easy alliance: Applications in nanomedicine, green chemistry and biotechnology. Biotechnology Advances, 2021, 53, 107844.	6.0	20
104	Evaluation of the <i>status quo</i> of polyphenols analysis: Part l—phytochemistry, bioactivity, interactions, and industrial uses. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3191-3218.	5.9	19
105	Tollâ€ŀike receptors as novel therapeutic targets for herpes simplex virus infection. Reviews in Medical Virology, 2019, 29, e2048.	3.9	18
106	Determination of Trace Elements Level of Pikeperch Collected from the Caspian Sea. Bulletin of Environmental Contamination and Toxicology, 2012, 88, 401-405.	1.3	17
107	Neuroprotective Effects of Ellagitannins: A Brief Review. Current Drug Targets, 2017, 18, 1518-1528.	1.0	16
108	Should we try the antiinflammatory natural product, celastrol, for <scp>COVID</scp> â€19?. Phytotherapy Research, 2020, 34, 1189-1190.	2.8	15

#	Article	IF	CITATIONS
109	Targeting Hippo signaling pathway by phytochemicals in cancer therapy. Seminars in Cancer Biology, 2022, 80, 183-194.	4.3	15
110	Lessons learned from SARS-CoV and MERS-CoV: FDA-approved Abelson tyrosine-protein kinase 2 inhibitors may help us combat SARS-CoV-2. Archives of Medical Science, 2020, 16, 519-521.	0.4	14
111	May we target doubleâ€membrane vesicles and oxysterolâ€binding protein to combat SARS oVâ€2 infection?. Cell Biology International, 2020, 44, 1770-1772.	1.4	12
112	Reactive oxygen species modulators in pulmonary medicine. Current Opinion in Pharmacology, 2021, 57, 157-164.	1.7	11
113	Bioremediation of toxic metals mercury and cesium using three types of biosorbent: bacterial exopolymer, gall nut, and oak fruit particles. Toxicological and Environmental Chemistry, 2012, 94, 1670-1677.	0.6	10
114	Harnessing polyphenol power by targeting eNOS for vascular diseases. Critical Reviews in Food Science and Nutrition, 2023, 63, 2093-2118.	5.4	10
115	Various interferon (IFN)-inducible transmembrane (IFITM) proteins for COVID-19, is there a role for the combination of mycophenolic acid and interferon?. Biochimie, 2020, 177, 50-52.	1.3	9
116	Multiple potential targets of opioids in the treatment of acute respiratory distress syndrome from COVIDâ€19. Journal of Cellular and Molecular Medicine, 2021, 25, 591-595.	1.6	8
117	Lessons from SARS and MERS remind us of the possible therapeutic effects of implementing a siRNA strategy to target COVIDâ€19: Shoot the messenger!. Journal of Cellular and Molecular Medicine, 2020, 24, 10267-10269.	1.6	7
118	Bi-3-Azaoxoisoaporphine Derivatives have Antidepressive Properties in a Murine Model of Post Stroke-Depressive Like Behavior. Current Neurovascular Research, 2013, 10, 164-171.	0.4	6
119	Glucose-6-phosphate dehydrogenase deficiency and SARS-CoV-2 mortality: Is there a link and what should we do?. Clinical Biochemistry, 2020, 86, 31-33.	0.8	6
120	Evaluation of the status quo of polyphenols analysis: Part II—Analysis methods and food processing effects. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3219-3240.	5.9	6
121	Game of "crowning―season 8: RAS and reproductive hormones in COVID-19 – can we end this viral series?. Archives of Medical Science, 2021, 17, 275-284.	0.4	6
122	Rationale for Effective Prophylaxis Against COVIDâ€19 Through Simultaneous Blockade of Both Endosomal and Nonâ€Endosomal SARSâ€CoVâ€2 Entry into Host Cell. Clinical and Translational Science, 2021, 14, 431-433.	1.5	5
123	Nephroprotective effect of aqueous extract of aerial parts ofHypericum scabrumL Toxicological and Environmental Chemistry, 2012, 94, 779-785.	0.6	2
124	Possible Targets and Therapies of SARS-CoV-2 Infection. Mini-Reviews in Medicinal Chemistry, 2020, 20, 1900-1907.	1.1	2
125	New trends in the pharmacological intervention of PPARs in obesity: Role of natural and synthetic compounds Current Medicinal Chemistry, 2020, 28, 4004-4022.	1.2	2
126	Oxidative stress and post-stroke depression: possible therapeutic role of polyphenols?. Current Medicinal Chemistry, 2014, , .	1.2	2