Miguel Otero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4762916/publications.pdf

Version: 2024-02-01

47 papers

3,504 citations

331259 21 h-index 243296 44 g-index

47 all docs

47 docs citations

47 times ranked

4395 citing authors

#	Article	IF	CITATIONS
1	Histologic and molecular features in pathologic human menisci from knees with and without osteoarthritis. Journal of Orthopaedic Research, 2022, 40, 504-512.	1.2	3
2	Computational pathology for musculoskeletal conditions using machine learning: advances, trends, and challenges. Arthritis Research and Therapy, 2022, 24, 68.	1.6	8
3	Identification of biological risk factors for persistent postoperative pain after total knee arthroplasty. Regional Anesthesia and Pain Medicine, 2022, 47, 161-166.	1.1	8
4	Knee fibrosis is associated with the development of osteoarthritis in a murine model of tibial compression. Journal of Orthopaedic Research, 2021, 39, 1030-1040.	1.2	8
5	Obesity and loadâ€induced posttraumatic osteoarthritis in the absence of fracture or surgical trauma. Journal of Orthopaedic Research, 2021, 39, 1007-1016.	1.2	7
6	Changes in DNA methylation accompany changes in gene expression during chondrocyte hypertrophic differentiation <i>in vitro</i> . Annals of the New York Academy of Sciences, 2021, 1490, 42-56.	1.8	10
7	Activation of nuclear factor-kappa B by TNF promotes nucleus pulposus mineralization through inhibition of ANKH and ENPP1. Scientific Reports, 2021, 11, 8271.	1.6	7
8	In vitro responses to platelet-rich-plasma are associated with variable clinical outcomes in patients with knee osteoarthritis. Scientific Reports, 2021, 11, 11493.	1.6	12
9	Targeted transcriptomic analyses of RNA isolated from formalinâ€fixed and paraffinâ€embedded human menisci. Journal of Orthopaedic Research, 2021, , .	1.2	0
10	Mouse Models of Osteoarthritis: Surgical Model of Post-traumatic Osteoarthritis Induced by Destabilization of the Medial Meniscus. Methods in Molecular Biology, 2021, 2221, 223-260.	0.4	10
11	Transcriptomic and epigenomic analyses uncovered Lrrc15 as a contributing factor to cartilage damage in osteoarthritis. Scientific Reports, 2021, 11, 21107.	1.6	6
12	Role of iRhoms 1 and 2 in Endochondral Ossification. International Journal of Molecular Sciences, 2020, 21, 8732.	1.8	4
13	Response to "Letter to the editor: Labral calcification plays a key role in hip pain and symptoms in femoroacetabular impingementâ€. Journal of Orthopaedic Surgery and Research, 2020, 15, 274.	0.9	0
14	Labral calcification plays a key role in hip pain and symptoms in femoroacetabular impingement. Journal of Orthopaedic Surgery and Research, 2020, 15, 86.	0.9	16
15	Immune and repair responses in joint tissues and lymph nodes after knee arthroplasty surgery in mice. Journal of Bone and Mineral Research, 2020, 36, 1765-1780.	3.1	7
16	Early inhibition of subchondral bone remodeling slows load-induced posttraumatic osteoarthritis development in mice. Journal of Bone and Mineral Research, 2020, 36, 2027-2038.	3.1	14
17	Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Annals of the New York Academy of Sciences, 2019, 1442, 17-34.	1.8	113
18	Identification of Inflammatory Mediators in Tendinopathy Using a Murine Subacromial Impingement Model. Journal of Orthopaedic Research, 2019, 37, 2575-2582.	1.2	15

#	Article	lF	Citations
19	Inducible knockout of CHUK/IKKα in adult chondrocytes reduces progression of cartilage degradation in a surgical model of osteoarthritis. Scientific Reports, 2019, 9, 8905.	1.6	15
20	Collagen XI mutation lowers susceptibility to loadâ€induced cartilage damage in mice. Journal of Orthopaedic Research, 2018, 36, 711-720.	1.2	20
21	Elf3 Contributes to Cartilage Degradation in vivo in a Surgical Model of Post-Traumatic Osteoarthritis. Scientific Reports, 2018, 8, 6438.	1.6	19
22	FGF8 and FGFR3 are up-regulated in hypertrophic chondrocytes: Association with chondrocyte death in deep zone of Kashin-Beck disease. Biochemical and Biophysical Research Communications, 2018, 500, 184-190.	1.0	13
23	E74-Like Factor (ELF3) and Leptin, a Novel Loop Between Obesity and Inflammation Perpetuating a Pro-Catabolic State in Cartilage. Cellular Physiology and Biochemistry, 2018, 45, 2401-2410.	1.1	15
24	Phlpp inhibitors block pain and cartilage degradation associated with osteoarthritis. Journal of Orthopaedic Research, 2018, 36, 1487-1497.	1.2	19
25	3-morpholinosydnonimine (SIN-1)-induced oxidative stress leads to necrosis in hypertrophic chondrocytes in vitro. Biomedicine and Pharmacotherapy, 2018, 106, 1696-1704.	2.5	19
26	ELF3 modulates type II collagen gene (<i>COL2A1</i>) transcription in chondrocytes by inhibiting SOX9-CBP/p300-driven histone acetyltransferase activity. Connective Tissue Research, 2017, 58, 15-26.	1.1	30
27	Perlecan is required for the chondrogenic differentiation of synovial mesenchymal cells through regulation of Sox9 gene expression. Journal of Orthopaedic Research, 2017, 35, 837-846.	1.2	27
28	DNA methylation of the RUNX2 P1 promoter mediates MMP13 transcription in chondrocytes. Scientific Reports, 2017, 7, 7771.	1.6	50
29	CCAAT/enhancer binding protein \hat{l}^2 (C/EBP \hat{l}^2) regulates the transcription of growth arrest and DNA damage-inducible protein 45 \hat{l}^2 (GADD45 \hat{l}^2) in articular chondrocytes. Pathology Research and Practice, 2016, 212, 302-309.	1.0	4
30	E74â€like factor 3 and nuclear factorâ€lºB regulate lipocalinâ€2 expression in chondrocytes. Journal of Physiology, 2016, 594, 6133-6146.	1.3	29
31	Mouse Models of Osteoarthritis: Surgical Model of Posttraumatic Osteoarthritis Induced by Destabilization of the Medial Meniscus. Methods in Molecular Biology, 2015, 1226, 143-173.	0.4	59
32	Fluoroquinolones Impair Tendon Healing in a Rat Rotator Cuff Repair Model. American Journal of Sports Medicine, 2014, 42, 2851-2859.	1.9	27
33	Association of Reduced Type IX Collagen Gene Expression in Human Osteoarthritic Chondrocytes With Epigenetic Silencing by DNA Hypermethylation. Arthritis and Rheumatology, 2014, 66, 3040-3051.	2.9	71
34	ADAM17 Controls Endochondral Ossification by Regulating Terminal Differentiation of Chondrocytes. Molecular and Cellular Biology, 2013, 33, 3077-3090.	1.1	47
35	Regulated Transcription of Human Matrix Metalloproteinase 13 (MMP13) and Interleukin- $1\hat{l}^2$ (IL1B) Genes in Chondrocytes Depends on Methylation of Specific Proximal Promoter CpG Sites. Journal of Biological Chemistry, 2013, 288, 10061-10072.	1.6	133
36	IKKα/CHUK Regulates Extracellular Matrix Remodeling Independent of Its Kinase Activity to Facilitate Articular Chondrocyte Differentiation. PLoS ONE, 2013, 8, e73024.	1.1	39

3

#	Article	IF	CITATIONS
37	E74-like Factor 3 (ELF3) Impacts on Matrix Metalloproteinase 13 (MMP13) Transcriptional Control in Articular Chondrocytes under Proinflammatory Stress. Journal of Biological Chemistry, 2012, 287, 3559-3572.	1.6	73
38	Human Chondrocyte Cultures as Models of Cartilage-Specific Gene Regulation. Methods in Molecular Biology, 2012, 806, 301-336.	0.4	52
39	Inflammation in osteoarthritis. Current Opinion in Rheumatology, 2011, 23, 471-478.	2.0	1,092
40	Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis., 2011, 21, 202-220.		386
41	GADD45 $\hat{1}^2$ Enhances Col10a1 Transcription via the MTK1/MKK3/6/p38 Axis and Activation of C/EBP $\hat{1}^2$ -TAD4 in Terminally Differentiating Chondrocytes. Journal of Biological Chemistry, 2010, 285, 8395-8407.	1.6	45
42	NF-κB Signaling: Multiple Angles to Target OA. Current Drug Targets, 2010, 11, 599-613.	1.0	478
43	ESEâ€1 is a potent repressor of type II collagen gene (<i>COL2A1</i>) transcription in human chondrocytes. Journal of Cellular Physiology, 2008, 215, 562-573.	2.0	54
44	Differential expression of GADD45 \hat{l}^2 in normal and osteoarthritic cartilage: Potential role in homeostasis of articular chondrocytes. Arthritis and Rheumatism, 2008, 58, 2075-2087.	6.7	91
45	Phosphatidylinositol 3-kinase, MEK-1 and p38 mediate leptin/interferon-gamma synergistic NOS type II induction in chondrocytes. Life Sciences, 2007, 81, 1452-1460.	2.0	47
46	Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1. Arthritis Research, 2005, 7, R581.	2.0	166
47	Synergistic induction of nitric oxide synthase type II: In vitro effect of leptin and interferon-? in human chondrocytes and ATDC5 chondrogenic cells. Arthritis and Rheumatism, 2003, 48, 404-409.	6.7	136