Mark F Lythgoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4762773/publications.pdf

Version: 2024-02-01

224 papers

10,876 citations

51 h-index 92 g-index

242 all docs 242 docs citations

times ranked

242

17695 citing authors

#	Article	IF	CITATIONS
1	Imaging biomarker roadmap for cancer studies. Nature Reviews Clinical Oncology, 2017, 14, 169-186.	12.5	792
2	De novo cardiomyocytes from within the activated adult heart after injury. Nature, 2011, 474, 640-644.	13.7	602
3	In vivo imaging of glucose uptake and metabolism in tumors. Nature Medicine, 2013, 19, 1067-1072.	15.2	427
4	Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison. NeuroImage, 2012, 59, 2241-2254.	2.1	372
5	Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nature Photonics, 2015, 9, 239-246.	15.6	362
6	Impaired glymphatic function and clearance of tau in an Alzheimer's disease model. Brain, 2020, 143, 2576-2593.	3.7	227
7	A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials, 2012, 33, 3401-3410.	5.7	188
8	Magnetic Resonance Imaging of Mesenchymal Stem Cells Homing to Pulmonary Metastases Using Biocompatible Magnetic Nanoparticles. Cancer Research, 2009, 69, 8862-8867.	0.4	187
9	Noninvasive Quantification of Solid Tumor Microstructure Using VERDICT MRI. Cancer Research, 2014, 74, 1902-1912.	0.4	185
10	Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease. Neurolmage, 2016, 125, 739-744.	2.1	179
11	Characterization of tau positron emission tomography tracer [¹⁸ F]AVâ€1451 binding to postmortem tissue in Alzheimer's disease,Âprimary tauopathies, and other dementias. Alzheimer's and Dementia, 2016, 12, 1116-1124.	0.4	161
12	Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut, 2014, 63, 300-309.	6.1	155
13	Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature, 2012, 484, 367-370.	13.7	150
14	Somatic activating mutations in <i>Pik3ca</i> cause sporadic venous malformations in mice and humans. Science Translational Medicine, 2016, 8, 332ra43.	5.8	138
15	Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow. Nature Communications, 2020, $11,131$.	5.8	137
16	Early changes in water diffusion, perfusion, T1, and T2 during focal cerebral ischemia in the rat studied at 8.5 T. Magnetic Resonance in Medicine, 1999, 41, 479-485.	1.9	130
17	Post-mortem examination of human fetuses: a comparison of whole-body high-field MRI at $9\hat{A}\cdot 4$ T with conventional MRI and invasive autopsy. Lancet, The, 2009, 374, 467-475.	6.3	130
18	Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nature Communications, 2015, 6, 8009.	5.8	126

#	Article	IF	CITATIONS
19	Magnetic Tagging Increases Delivery of Circulating Progenitors in Vascular Injury. JACC: Cardiovascular Interventions, 2009, 2, 794-802.	1.1	124
20	Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury. Biomaterials, 2013, 34, 1987-1994.	5.7	124
21	fMRI response to blue light delivery in the na \tilde{A} -ve brain: Implications for combined optogenetic fMRI studies. NeuroImage, 2013, 66, 634-641.	2.1	122
22	Acupuncture needling sensation: The neural correlates of deqi using fMRI. Brain Research, 2010, 1315, 111-118.	1.1	113
23	The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging. Physics in Medicine and Biology, 2000, 45, R97-R138.	1.6	112
24	Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI. ELife, 2018, 7, .	2.8	112
25	Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system. Biomaterials, 2010, 31, 5366-5371.	5.7	109
26	The Chronic Vascular and Haemodynamic Response after Permanent Bilateral Common Carotid Occlusion in Newborn and Adult Rats. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1066-1075.	2.4	108
27	Gold–silica quantum rattles for multimodal imaging and therapy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1959-1964.	3.3	107
28	Amniotic Fluid Stem Cells Are Cardioprotective Following Acute Myocardial Infarction. Stem Cells and Development, 2011, 20, 1985-1994.	1.1	104
29	An MRAS, SHOC2, and SCRIB Complex Coordinates ERK Pathway Activation with Polarity and Tumorigenic Growth. Molecular Cell, 2013, 52, 679-692.	4.5	96
30	Non-invasive MRI of brain clearance pathways using multiple echo time arterial spin labelling: an aquaporin-4 study. Neurolmage, 2019, 188, 515-523.	2.1	92
31	Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours. Nature Biomedical Engineering, 2018, 2, 773-787.	11.6	91
32	A One-Pot Three-Component Radiochemical Reaction for Rapid Assembly of ¹²⁵ I-Labeled Molecular Probes. Journal of the American Chemical Society, 2013, 135, 703-709.	6.6	86
33	In Vitro and In Vivo Cardiomyogenic Differentiation of Amniotic Fluid Stem Cells. Stem Cell Reviews and Reports, 2011, 7, 364-380.	5.6	82
34	Control of ventricular excitability by neurons of the dorsal motor nucleus of the vagus nerve. Heart Rhythm, 2015, 12, 2285-2293.	0.3	82
35	In vivo imaging of tau pathology using multi-parametric quantitative MRI. Neurolmage, 2015, 111, 369-378.	2.1	77
36	Brain imaging of acupuncture: Comparing superficial with deep needling. Neuroscience Letters, 2008, 434, 144-149.	1.0	73

#	Article	IF	CITATIONS
37	In vivo photoacoustic imaging of mouse embryos. Journal of Biomedical Optics, 2012, 17, 061220.	1.4	71
38	Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging. Biomaterials, 2013, 34, 1179-1192.	5.7	69
39	Implementation of quantitative FAIR perfusion imaging with a short repetition time in time-course studies. Magnetic Resonance in Medicine, 1999, 41, 829-840.	1.9	68
40	Nanoparticles functionalised with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials, 2010, 31, 1307-1315.	5.7	68
41	Thymosin \hat{l}^2 4-sulfoxide attenuates inflammatory cell infiltration and promotes cardiac wound healing. Nature Communications, 2013, 4, 2081.	5.8	66
42	Effects of diffusion anisotropy on lesion delineation in a rat model of cerebral ischemia. Magnetic Resonance in Medicine, 1997, 38, 662-668.	1.9	65
43	Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles. Regenerative Medicine, 2015, 10, 757-772.	0.8	65
44	Mechanosensory Signaling in Astrocytes. Journal of Neuroscience, 2020, 40, 9364-9371.	1.7	61
45	Neuroprotective Effects of Virally Delivered HSPs in Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 371-381.	2.4	60
46	Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion. PLoS ONE, 2014, 9, e86576.	1.1	60
47	In vivo hadamard encoded continuous arterial spin labeling (H-CASL). Magnetic Resonance in Medicine, 2010, 63, 1111-1118.	1.9	58
48	Mitochondrial cyclophilin-D as a potential therapeutic target for post-myocardial infarction heart failure. Journal of Cellular and Molecular Medicine, 2011, 15, 2443-2451.	1.6	58
49	Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping. Neurolmage, 2011, 54, 769-778.	2.1	57
50	Neuroprotective effects of HSP70 overexpression after cerebral ischaemia—An MRI study. Experimental Neurology, 2005, 195, 257-266.	2.0	56
51	Sulfonium Salts as Leaving Groups for Aromatic Labelling of Drug-like Small Molecules with Fluorine-18. Scientific Reports, 2015, 5, 9941.	1.6	55
52	Vagal determinants of exercise capacity. Nature Communications, 2017, 8, 15097.	5.8	55
53	Impaired brain glymphatic flow in experimental hepatic encephalopathy. Journal of Hepatology, 2019, 70, 40-49.	1.8	55
54	Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. International Journal of Nanomedicine, 2016, 11, 1973.	3.3	53

#	Article	lF	Citations
55	A quantitative method for fast diffusion imaging using magnetization-prepared turboFLASH. Magnetic Resonance in Medicine, 1998, 39, 950-960.	1.9	50
56	Regional Variation of Cerebral Blood Flow and Arterial Transit Time in the Normal and Hypoperfused Rat Brain Measured Using Continuous Arterial Spin Labeling MRI. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 274-282.	2.4	50
57	Multifunctional receptor-targeted nanocomplexes for the delivery of therapeutic nucleic acids to the Brain. Biomaterials, 2013, 34, 9190-9200.	5.7	49
58	A Critical Role for Purinergic Signalling in the Mechanisms Underlying Generation of BOLD fMRI Responses. Journal of Neuroscience, 2015, 35, 5284-5292.	1.7	49
59	Mutation of the Diamond-Blackfan Anemia Gene Rps7 in Mouse Results in Morphological and Neuroanatomical Phenotypes. PLoS Genetics, 2013, 9, e1003094.	1.5	47
60	PEGylation improves the receptor-mediated transfection efficiency of peptide-targeted, self-assembling, anionic nanocomplexes. Journal of Controlled Release, 2014, 174, 177-187.	4.8	47
61	Overexpression of Heat Shock Protein 27 Reduces Cortical Damage after Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 849-856.	2.4	45
62	Loss of <i>Prox1 </i> ii> in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9515-9520.	3.3	45
63	Dexamethasone exacerbates cerebral edema and brain injury following lithium-pilocarpine induced status epilepticus. Neurobiology of Disease, 2014, 63, 229-236.	2.1	45
64	Tissue magnetic susceptibility mapping as a marker of tau pathology in Alzheimer's disease. NeuroImage, 2017, 159, 334-345.	2.1	45
65	Reduction of errors in ASL cerebral perfusion and arterial transit time maps using image deâ€noising. Magnetic Resonance in Medicine, 2010, 64, 715-724.	1.9	43
66	Acute changes in MRI diffusion, perfusion, T1, and T2 in a rat model of oligemia produced by partial occlusion of the middle cerebral artery. Magnetic Resonance in Medicine, 2000, 44, 706-712.	1.9	42
67	In vivo magnetic resonance imaging of endogenous neuroblasts labelled with a ferumoxide–polycation complex. NeuroImage, 2009, 44, 1239-1246.	2.1	42
68	A coming of age: advanced imaging technologies for characterising the developing mouse. Trends in Genetics, 2013, 29, 700-711.	2.9	42
69	Imaging the accumulation and suppression of tau pathology using multiparametric MRI. Neurobiology of Aging, 2016, 39, 184-194.	1.5	42
70	Origins of the vagal drive controlling left ventricular contractility. Journal of Physiology, 2016, 594, 4017-4030.	1.3	42
71	Assessment of Tumor Redox Status through (<i>S</i>)-4-(3-[18F]fluoropropyl)- <scp>L</scp> -Glutamic Acid PET Imaging of System xcâ° Activity. Cancer Research, 2022, 79, 853-863.	0.4	42
72	pHâ€Activatable MnOâ€Based Fluorescence and Magnetic Resonance Bimodal Nanoprobe for Cancer Imaging. Advanced Healthcare Materials, 2016, 5, 721-729.	3.9	40

#	Article	IF	CITATIONS
73	Measuring Biexponential Transverse Relaxation of the ASL Signal at 9.4 T to Estimate Arterial Oxygen Saturation and the Time of Exchange of Labeled Blood Water into Cortical Brain Tissue. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 215-224.	2.4	39
74	fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI. NeuroImage, 2016, 139, 337-345.	2.1	38
75	Planar cell polarity genes Celsr1 and Vangl2 are necessary for kidney growth, differentiation, and rostrocaudal patterning. Kidney International, 2016, 90, 1274-1284.	2.6	37
76	Comparison of In Vivo and Ex Vivo MRI for the Detection of Structural Abnormalities in a Mouse Model of Tauopathy. Frontiers in Neuroinformatics, 2017, 11, 20.	1.3	37
77	Neuroimaging of animal models of brain disease. British Medical Bulletin, 2003, 65, 235-257.	2.7	36
78	Proteome changes associated with hippocampal MRI abnormalities in the lithium pilocarpine-induced model of convulsive status epilepticus. Proteomics, 2007, 7, 1336-1344.	1.3	35
79	Myocardial regeneration: expanding the repertoire of thymosin \hat{l}^24 in the ischemic heart. Annals of the New York Academy of Sciences, 2012, 1269, 92-101.	1.8	35
80	Imaging seizure-induced inflammation using an antibody targeted iron oxide contrast agent. Neurolmage, 2012, 60, 1149-1155.	2.1	35
81	Estimation of pore size in a microstructure phantom using the optimised gradient waveform diffusion weighted NMR sequence. Journal of Magnetic Resonance, 2012, 214, 51-60.	1.2	35
82	Cardiac arterial spin labeling using segmented ECGâ€gated Look‣ocker FAIR: Variability and repeatability in preclinical studies. Magnetic Resonance in Medicine, 2013, 69, 238-247.	1.9	35
83	Structural abnormality of the hippocampus associated with depressive symptoms in heart failure rats. Neurolmage, 2015, 105, 84-92.	2.1	35
84	Potential of Magnetic Hyperthermia to Stimulate Localized Immune Activation. Small, 2021, 17, e2005241.	5.2	35
85	Effect of renal maturation on the clearance of technetium-99m mercaptoacetyltriglycine. European Journal of Nuclear Medicine and Molecular Imaging, 1994, 21, 1333-1337.	2.2	34
86	Quantitative MRI predicts status epilepticus-induced hippocampal injury in the lithium–pilocarpine rat model. Epilepsy Research, 2010, 88, 221-230.	0.8	34
87	Cardiac phenotyping in <i>ex vivo</i> murine embryos using <i>µ</i> MRI. NMR in Biomedicine, 2009, 22, 857-866.	1.6	33
88	Characterizing the Origin of the Arterial Spin Labelling Signal in MRI Using a Multiecho Acquisition Approach. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1836-1845.	2.4	33
89	Cardiovascular Magnetic Resonance Imaging in Experimental Models. Open Cardiovascular Medicine Journal, 2010, 4, 278-292.	0.6	33
90	Lipid peptide nanocomplexes for gene delivery and magnetic resonance imaging in the brain. Journal of Controlled Release, 2012, 162, 340-348.	4.8	32

#	Article	IF	Citations
91	Investigating Low-Velocity Fluid Flow in Tumors with Convection-MRI. Cancer Research, 2018, 78, 1859-1872.	0.4	32
92	Measurement of Tumor Antioxidant Capacity and Prediction of Chemotherapy Resistance in Preclinical Models of Ovarian Cancer by Positron Emission Tomography. Clinical Cancer Research, 2019, 25, 2471-2482.	3.2	32
93	Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT. Stem Cell Research and Therapy, 2020, 11, 256.	2.4	32
94	Hypertension in paediatrics: can pre- and post-captopril technetium-99m dimercaptosuccinie acid renal scans exclude renovascular disease?. European Journal of Nuclear Medicine and Molecular Imaging, 1993, 20, 699-702.	2.2	31
95	Assessment of various parameters in the estimation of differential renal function using technetium-99m mercaptoacetyltriglycine. European Journal of Nuclear Medicine and Molecular Imaging, 1999, 26, 155-162.	3.3	31
96	Magnetic cell delivery for peripheral arterial disease: A theoretical framework. Medical Physics, 2011, 38, 3932-3943.	1.6	29
97	Post-mortem cerebral magnetic resonance imaging T1 and T2 in fetuses, newborns and infants. European Journal of Radiology, 2012, 81, e232-e238.	1.2	29
98	Preferential Targeting of Disseminated Liver Tumors Using a Recombinant Adeno-Associated Viral Vector. Human Gene Therapy, 2015, 26, 94-103.	1.4	29
99	In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models. American Journal of Physiology - Renal Physiology, 2018, 314, F1145-F1153.	1.3	29
100	Cancer invasion regulates vascular complexity in a three-dimensional biomimetic model. European Journal of Cancer, 2019, 119, 179-193.	1.3	29
101	Radio-metal cross-linking of alginate hydrogels for non-invasive in vivo imaging. Biomaterials, 2020, 243, 119930.	5.7	29
102	Noninvasive diffusion magnetic resonance imaging of brain tumour cell size for the early detection of therapeutic response. Scientific Reports, 2020, 10, 9223.	1.6	29
103	Comparison of segmentation methods for MRI measurement of cardiac function in rats. Journal of Magnetic Resonance Imaging, 2010, 32, 869-877.	1.9	28
104	Structural correlates of active-staining following magnetic resonance microscopy in the mouse brain. NeuroImage, 2011, 56, 974-983.	2.1	28
105	Rapid assessment of myocardial infarct size in rodents using multi-slice inversion recovery late gadolinium enhancement CMR at 9.4T. Journal of Cardiovascular Magnetic Resonance, 2011, 13, 44.	1.6	28
106	Amniotic Fluid Stem Cells Prevent Development of Ascites in a Neonatal Rat Model of Necrotizing Enterocolitis. European Journal of Pediatric Surgery, 2014, 24, 057-060.	0.7	28
107	Hydroxychloroquine Protects against Cardiac Ischaemia/Reperfusion Injury In Vivo via Enhancement of ERK1/2 Phosphorylation. PLoS ONE, 2015, 10, e0143771.	1.1	27
108	A critical role for the ATP-sensitive potassium channel subunit K _{IR} 6.1 in the control of cerebral blood flow. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2089-2095.	2.4	27

#	Article	IF	Citations
109	BOdependence of the on-resonance longitudinal relaxation time in the rotating frame (T1i) in protein phantoms and rat brain in vivo. Magnetic Resonance in Medicine, 2004, 51, 4-8.	1.9	26
110	Longitudinal in vivo MRI in a Huntington's disease mouse model: Global atrophy in the absence of white matter microstructural damage. Scientific Reports, 2016, 6, 32423.	1.6	26
111	Longitudinal Photoacoustic Imaging of the Pharmacodynamic Effect of Vascular Targeted Therapy on Tumors. Clinical Cancer Research, 2019, 25, 7436-7447.	3.2	26
112	Is Your System Calibrated? MRI Gradient System Calibration for Pre-Clinical, High-Resolution Imaging. PLoS ONE, 2014, 9, e96568.	1.1	26
113	Protective Effect of Post-Ischaemic Viral Delivery of Heat Shock Proteins <i>in vivo</i> . Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 254-263.	2.4	25
114	Multifunctional receptor-targeted nanocomplexes for magnetic resonance imaging and transfection of tumours. Biomaterials, 2012, 33, 7241-7250.	5.7	25
115	Increased Cerebral Vascular Reactivity in the Tau Expressing rTg4510 Mouse: Evidence against the Role of Tau Pathology to Impair Vascular Health in Alzheimer's Disease. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 359-362.	2.4	25
116	Bone marrow mononuclear cells reduce myocardial reperfusion injury by activating the PI3K/Akt survival pathway. Atherosclerosis, 2010, 213, 67-76.	0.4	24
117	Chemically Treated 3D Printed Polymer Scaffolds for Biomineral Formation. ACS Omega, 2018, 3, 4342-4351.	1.6	24
118	High-Fidelity Meshes from Tissue Samples for Diffusion MRI Simulations. Lecture Notes in Computer Science, 2010, 13, 404-411.	1.0	24
119	Estimation and relevance of depth correction in paediatric renal studies. European Journal of Nuclear Medicine and Molecular Imaging, 1998, 25, 115-119.	3.3	23
120	Simultaneous noninvasive measurement of CBF and CBV using double-echo FAIR (DEFAIR). Magnetic Resonance in Medicine, 2001, 45, 853-863.	1.9	23
121	MR image-guided investigation of regional signal transducers and activators of transcription-1 activation in a rat model of focal cerebral ischemia. Neuroscience, 2004, 127, 333-339.	1.1	23
122	In vivo measurement of the longitudinal relaxation time of arterial blood (T1a) in the mouse using a pulsed arterial spin labeling approach. Magnetic Resonance in Medicine, 2006, 55, 943-947.	1.9	23
123	Magnetic hyperthermia controlled drug release in the GI tract: solving the problem of detection. Scientific Reports, 2016, 6, 34271.	1.6	23
124	CO2 signaling mediates neurovascular coupling in the cerebral cortex. Nature Communications, 2022, 13, 2125.	5.8	23
125	Viable and fixed white matter: Diffusion magnetic resonance comparisons and contrasts at physiological temperature. Magnetic Resonance in Medicine, 2014, 72, 1151-1161.	1.9	22
126	Early microgliosis precedes neuronal loss and behavioural impairment in mice with a frontotemporal dementia-causing CHMP2B mutation. Human Molecular Genetics, 2017, 26, ddx003.	1.4	22

#	Article	IF	CITATIONS
127	Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation. Frontiers in Neuroscience, 2019, 13, 11.	1.4	22
128	Selective Interleukin-6 Trans-Signaling Blockade Is More Effective Than Panantagonism in Reperfused MyocardialÂInfarction. JACC Basic To Translational Science, 2021, 6, 431-443.	1.9	22
129	The relationship between magnetic resonance diffusion imaging and autoradiographic markers of cerebral blood flow and hypoxia in an animal stroke model. Magnetic Resonance in Medicine, 1999, 41, 706-714.	1.9	20
130	Bimodal Imaging of Inflammation with SPECT/CT and MRI Using Iodine-125 Labeled VCAM-1 Targeting Microparticle Conjugates. Bioconjugate Chemistry, 2015, 26, 1542-1549.	1.8	20
131	Caval Subtraction 2D Phase-Contrast MRI to Measure Total Liver and Hepatic Arterial Blood Flow. Investigative Radiology, 2017, 52, 170-176.	3.5	20
132	Increased bloodâ€"brain barrier permeability to water in the aging brain detected using noninvasive multiâ€₹E ASL MRI. Magnetic Resonance in Medicine, 2021, 85, 326-333.	1.9	20
133	Comparative Study of the FAIR Technique of Perfusion Quantification with the Hydrogen Clearance Method. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 689-699.	2.4	19
134	Development of [¹⁸ F]AldoView as the First Highly Selective Aldosterone Synthase PET Tracer for Imaging of Primary Hyperaldosteronism. Journal of Medicinal Chemistry, 2021, 64, 9321-9329.	2.9	19
135	Fully-Automated $\hat{l}^{1}\!\!/\!4$ MRI Morphometric Phenotyping of the Tc1 Mouse Model of Down Syndrome. PLoS ONE, 2016, 11, e0162974.	1.1	19
136	Hepatic arterial spin labelling MRI: an initial evaluation in mice. NMR in Biomedicine, 2015, 28, 272-280.	1.6	18
137	Development of Fluorine-18 Labeled Metabolically Activated Tracers for Imaging of Drug Efflux Transporters with Positron Emission Tomography. Journal of Medicinal Chemistry, 2015, 58, 6058-6080.	2.9	18
138	Coordination chemistry of amide-functionalised tetraazamacrocycles: structural, relaxometric and cytotoxicity studies. Dalton Transactions, 2010, 39, 10056.	1.6	17
139	Quantification of light attenuation in optically cleared mouse brains. Journal of Biomedical Optics, 2015, 20, 080503.	1.4	17
140	Vascular assessment of liver diseaseâ€"towards a new frontier in MRI. British Journal of Radiology, 2016, 89, 20150675.	1.0	17
141	Optic nerve thinning and neurosensory retinal degeneration in the rTg4510 mouse model of frontotemporal dementia. Acta Neuropathologica Communications, 2019, 7, 4.	2.4	17
142	Monitoring the Growth of an Orthotopic Tumour Xenograft Model: Multi-Modal Imaging Assessment with Benchtop MRI (1T), High-Field MRI (9.4T), Ultrasound and Bioluminescence. PLoS ONE, 2016, 11, e0156162.	1.1	17
143	Rapid Simultaneous Mapping of T2 and T2* by Multiple Acquisition of Spin and Gradient Echoes Using Interleaved Echo Planar Imaging (MASAGE-IEPI). NeuroImage, 2002, 15, 992-1002.	2.1	16
144	A viable isolated tissue system: A tool for detailed MR measurements and controlled perturbation in physiologically stable tissue. Magnetic Resonance in Medicine, 2013, 69, 1603-1610.	1.9	16

#	Article	IF	Citations
145	Multislice cardiac arterial spin labeling using improved myocardial perfusion quantification with simultaneously measured blood pool input function. Magnetic Resonance in Medicine, 2013, 70, 1125-1136.	1.9	16
146	Detecting intratumoral heterogeneity of EGFR activity by liposome-based in vivo transfection of a fluorescent biosensor. Oncogene, 2017, 36, 3618-3628.	2.6	16
147	Cerebrovascular Reactivity Following Focal Brain Ischemia in the Rat: A Functional Magnetic Resonance Imaging Study. NeuroImage, 2001, 13, 339-350.	2.1	15
148	Development of Purine-Derived ¹⁸ F-Labeled Pro-drug Tracers for Imaging of MRP1 Activity with PET. Journal of Medicinal Chemistry, 2014, 57, 1023-1032.	2.9	15
149	Decomposition of spontaneous fluctuations in tumour oxygenation using BOLD MRI and independent component analysis. British Journal of Cancer, 2015, 113, 1168-1177.	2.9	15
150	Using the robust principal component analysis algorithm to remove RF spike artifacts from MR images. Magnetic Resonance in Medicine, 2016, 75, 2517-2525.	1.9	15
151	Non-invasive MRI biomarkers for the early assessment of iron overload in a humanized mouse model of \hat{l}^2 -thalassemia. Scientific Reports, 2017, 7, 43439.	1.6	15
152	Surface radio-mineralisation mediates chelate-free radiolabelling of iron oxide nanoparticles. Chemical Science, 2019, 10, 2592-2597.	3.7	15
153	Reperfusion in a Gerbil Model of Forebrain Ischemia Using Serial Magnetic Resonance FAIR Perfusion Imaging. Stroke, 1999, 30, 1263-1270.	1.0	14
154	Understanding and optimizing the amplitude modulated control for multiple-slice continuous arterial spin labeling. Magnetic Resonance in Medicine, 2005, 54, 594-604.	1.9	14
155	Segmentation propagation using a 3D embryo atlas for highâ€throughput MRI phenotyping: Comparison and validation with manual segmentation. Magnetic Resonance in Medicine, 2013, 69, 877-883.	1.9	14
156	Significant Therapeutic Efficacy with Combined Radioimmunotherapy and Cetuximab in Preclinical Models of Colorectal Cancer. Journal of Nuclear Medicine, 2015, 56, 1239-1245.	2.8	14
157	Multi-modal imaging probe for assessing the efficiency of stem cell delivery to orthotopic breast tumours. Nanoscale, 2020, 12, 16570-16585.	2.8	14
158	Autoradiographic imaging of cerebral ischaemia using a combination of blood flow and hypoxic markers in an animal model. European Journal of Nuclear Medicine and Molecular Imaging, 1997, 24, 16-20.	2.2	13
159	High resolution MRI reveals global changes in brains of Cln3 mutant mice. European Journal of Paediatric Neurology, 2001, 5, 103-107.	0.7	13
160	Rapid magnetic cell delivery for large tubular bioengineered constructs. Journal of the Royal Society Interface, 2012, 9, 3008-3016.	1,5	13
161	Acute changes in liver tumour perfusion measured non-invasively with arterial spin labelling. British Journal of Cancer, 2016, 114, 897-904.	2.9	13
162	Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI. Physics in Medicine and Biology, 2016, 61, 6905-6918.	1.6	12

#	Article	IF	CITATIONS
163	Volumetric Spatial Correlations of Neurovascular Coupling Studied using Single Pulse Opto-fMRI. Scientific Reports, 2017, 7, 41583.	1.6	12
164	Remote and Selective Control of Astrocytes by Magnetomechanical Stimulation. Advanced Science, 2022, 9, e2104194.	5.6	12
165	MRI of Animal Models of Brain Disease. Methods in Enzymology, 2004, 386, 149-177.	0.4	11
166	Quantifying the area-at-risk of myocardial infarction in-vivo using arterial spin labeling cardiac magnetic resonance. Scientific Reports, 2017, 7, 2271.	1.6	11
167	Scalable magnet geometries enhance tumour targeting of magnetic nano-carriers. Materials and Design, 2020, 191, 108610.	3.3	11
168	Pharmacological MRI with Simultaneous Measurement of Cerebral Perfusion and Blood-Cerebrospinal Fluid Barrier Function using Interleaved Echo-Time Arterial Spin Labelling. NeuroImage, 2021, 238, 118270.	2.1	11
169	Two-Compartment Models of the Diffusion MR Signal in Brain White Matter. Lecture Notes in Computer Science, 2009, 12, 329-336.	1.0	11
170	The importance of RF bandwidth for effective tagging in pulsed arterial spin labeling MRI at 9.4T. NMR in Biomedicine, 2012, 25, 1139-1143.	1.6	10
171	Enhanced tissue differentiation in the developing mouse brain using magnetic resonance microâ€histology. Magnetic Resonance in Medicine, 2013, 70, 1380-1388.	1.9	10
172	Aberrant developmental titin splicing and dysregulated sarcomere length in Thymosin \hat{l}^24 knockout mice. Journal of Molecular and Cellular Cardiology, 2017, 102, 94-107.	0.9	10
173	Electrochemical carbon fiber-based technique for simultaneous recordings of brain tissue PO2, pH, and extracellular field potentials. Biosensors and Bioelectronics: X, 2019, 3, 100034.	0.9	10
174	Stem cell delivery to kidney via minimally invasive ultrasound-guided renal artery injection in mice. Scientific Reports, 2020, 10, 7514.	1.6	10
175	Use of highâ€frequency ultrasound to study the prenatal development of cranial neural tube defects and hydrocephalus in <i>Gldc</i> à€deficient mice. Prenatal Diagnosis, 2017, 37, 273-281.	1.1	9
176	Measuring diffusion exchange across the cell membrane with DEXSY (Diffusion Exchange) Tj ETQq0 0 0 rgBT /Ov	erlogk 10 ⁻	Tf 5 0 222 Td
177	Acoustic attenuation compensation in photoacoustic tomography: application to high-resolution 3D imaging of vascular networks in mice. Proceedings of SPIE, 2011, , .	0.8	8
178	Novel exomphalos genetic mouse model: The importance of accurate phenotypic classification. Journal of Pediatric Surgery, 2013, 48, 2036-2042.	0.8	8
179	Use of Caval Subtraction 2D Phase-Contrast MR Imaging to Measure Total Liver and Hepatic Arterial Blood Flow: Preclinical Validation and Initial Clinical Translation. Radiology, 2016, 280, 916-923.	3.6	8
180	Myocardial Viability Imaging using Manganeseâ€Enhanced MRI in the First Hours after Myocardial Infarction. Advanced Science, 2021, 8, e2003987.	5.6	8

#	Article	IF	CITATIONS
181	Imageâ€Guided Magnetic Thermoseed Navigation and Tumor Ablation Using a Magnetic Resonance Imaging System. Advanced Science, 2022, , 2105333.	5.6	8
182	Monitoring systemic amyloidosis using MRI measurements of the extracellular volume fraction. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2013, 20, 93-98.	1.4	7
183	Coupled cellular therapy and magnetic targeting for airway regeneration. Biochemical Society Transactions, 2014, 42, 657-661.	1.6	7
184	In Vivo Imaging of Tau Pathology Using Magnetic Resonance Imaging Textural Analysis. Frontiers in Neuroscience, 2017, 11, 599.	1.4	7
185	Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellar cortex of the Tc1 mouse model of down syndrome – a comprehensive morphometric analysis with active staining contrast-enhanced MRI. Neurolmage, 2020, 223, 117271.	2.1	7
186	Gradual changes in the apparent diffusion coefficient of water in selectively vulnerable brain regions following brief ischemia in the gerbil. Magnetic Resonance in Medicine, 2005, 53, 593-600.	1.9	6
187	In vivo photoacoustic imaging of tyrosinase expressing tumours in mice. , 2012, , .		6
188	Imaging the paediatric lung: what does nanotechnology have to offer?. Paediatric Respiratory Reviews, 2012, 13, 84-88.	1.2	6
189	Synthesis and evaluation of a 125I-labeled iminodihydroquinoline-derived tracer for imaging of voltage-gated sodium channels. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5170-5173.	1.0	6
190	Fluorescence-guided development of a tricistronic vector encoding bimodal optical and nuclear genetic reporters for in vivo cellular imaging. EJNMMI Research, 2015, 5, 18.	1.1	6
191	Improved hepatic arterial fraction estimation using cardiac output correction of arterial input functions for liver DCE MRI. Physics in Medicine and Biology, 2017, 62, 1533-1546.	1.6	6
192	Noninvasive quantification of oxygen saturation in the portal and hepatic veins in healthy mice and those with colorectal liver metastases using QSM MRI. Magnetic Resonance in Medicine, 2019, 81, 2666-2675.	1.9	6
193	Evaluation of a 125I-labelled benzazepinone derived voltage-gated sodium channel blocker for imaging with SPECT. Organic and Biomolecular Chemistry, 2012, 10, 9474.	1.5	5
194	Extracranial measurements of amide proton transfer using exchangeâ€modulated pointâ€resolved spectroscopy (EXPRESS). NMR in Biomedicine, 2012, 25, 829-834.	1.6	5
195	Magnet-Targeted Delivery and Imaging. , 2017, , 123-152.		5
196	Direct comparison of highâ€ŧemporalâ€ŧesolution CINE MRI with Doppler ultrasound for assessment of diastolic dysfunction in mice. NMR in Biomedicine, 2017, 30, e3763.	1.6	4
197	Liver perfusion MRI in a rodent model of cirrhosis: Agreement with bulkâ€flow phaseâ€contrast MRI and noninvasive evaluation of inflammation in chronic liver disease using flowâ€sensitive alternating inversion recovery arterial spin labelling and tissue T1. NMR in Biomedicine, 2021, 34, e4423.	1.6	4
198	Cardiac-induced liver deformation as a measure of liver stiffness using dynamic imaging without magnetization taggingâ€"preclinical proof-of-concept, clinical translation, reproducibility and feasibility in patients with cirrhosis. Abdominal Radiology, 2021, 46, 4660-4670.	1.0	4

#	Article	IF	Citations
199	Micro-MRI phenotyping of a novel double-knockout mouse model of congenital heart disease. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	1.6	3
200	Multimodality characterization of microstructure by the combination of diffusion NMR and time-domain diffuse optical data. Physics in Medicine and Biology, 2014, 59, 2639-2658.	1.6	3
201	Flow-Based Single Cell Deposition for High-Throughput Screening of Protein Libraries. PLoS ONE, 2015, 10, e0140730.	1.1	3
202	Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the <i>splotch</i> mouse model. Magnetic Resonance in Medicine, 2015, 73, 731-739.	1.9	3
203	Haemodynamic changes in cirrhosis following terlipressin and induction of sepsisâ€"a preclinical study using caval subtraction phase-contrast and cardiac MRI. European Radiology, 2021, 31, 2518-2528.	2.3	3
204	Monitoring ferumoxide-labelled neural progenitor cells and lesion evolution by magnetic resonance imaging in a model of cell transplantation in cerebral ischaemia. F1000Research, 0, 2, 252.	0.8	3
205	Late gadolinium enhanced MRI in small animal models of myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	1.6	2
206	Equilibrium contrast CMR for the detection of amyloidosis in mice. Journal of Cardiovascular Magnetic Resonance, 2011, 13, .	1.6	2
207	The effect of imatinib therapy on tumour cycling hypoxia, tissue oxygenation and vascular reactivity. Wellcome Open Research, 0, 2, 38.	0.9	2
208	Primed Infusion with Delayed Equilibrium of Gd.DTPA for Enhanced Imaging of Small Pulmonary Metastases. PLoS ONE, 2013, 8, e54903.	1.1	2
209	Development of a radiopharmaceutical activity schedule for technetium-99m dimercaptosuccinic acid in children based on image quality criteria. European Journal of Nuclear Medicine and Molecular Imaging, 1997, 24, 1362-1368.	3.3	1
210	Monitoring ferumoxide-labelled neural progenitor cells and lesion evolution by magnetic resonance imaging in a model of cell transplantation in cerebral ischaemia. F1000Research, 2013, 2, 252.	0.8	1
211	Postmortem Examination of Human Fetuses: A Comparison of Whole-Body High-Field MRI at 9.4 Tesla With Conventional MRI and Invasive Autopsy. Obstetrical and Gynecological Survey, 2009, 64, 787-789.	0.2	0
212	In Amnio MRI of Mouse Embryos. PLoS ONE, 2014, 9, e109143.	1.1	0
213	Optical clearing of the mouse brain and light attenuation quantitation. , 2015, , .		0
214	Non-invasive imaging of disrupted protein homeostasis induced by proteasome inhibitor treatment using chemical exchange saturation transfer MRI. Scientific Reports, 2018, 8, 15068.	1.6	0
215	Experimental Models of Brain Disease: MRI Studies. , 2018, , 93-120.		О
216	MRI Measurement of Cerebral Perfusion and Application to Experimental Neuroscience. Frontiers in Neuroscience, 2002, , 21-54.	0.0	0

#	Article	IF	CITATIONS
217	Gene therapy for stroke using viral delivery of heat schock proteins. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S509-S509.	2.4	0
218	Heat shock protein overexpression - effect on experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S508-S508.	2.4	0
219	A comparison of FAIR and CASL perfusion imaging in mice. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S343-S343.	2.4	0
220	Vascular and haemodynamic response following chronic hypoperfusion in the developing and mature rat. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S218-S218.	2.4	0
221	Grey Matter Sublayer Thickness Estimation in the Mouse Cerebellum. Lecture Notes in Computer Science, 2015, , 644-651.	1.0	0
222	Experimental Models of Brain Disease: MRI Contrast Mechanisms for the Assessment of Pathophysiological Status., 2017,, 1-30.		0
223	Experimental Models of Brain Disease: MRI Studies. , 2017, , 1-28.		0
224	Experimental Models of Brain Disease: MRI Contrast Mechanisms for the Assessment of Pathophysiological Status., 2018,, 63-92.		0