
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4762527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008, 71, 1308-1316.	8.2	1,303
2	Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment, 2009, 407, 1461-1468.	8.0	1,099
3	Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Archives of Toxicology, 2013, 87, 1181-1200.	4.2	1,016
4	From ecotoxicology to nanoecotoxicology. Toxicology, 2010, 269, 105-119.	4.2	673
5	Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology in Vitro, 2009, 23, 1116-1122.	2.4	531
6	Size-Dependent Toxicity of Silver Nanoparticles to Bacteria, Yeast, Algae, Crustaceans and Mammalian Cells In Vitro. PLoS ONE, 2014, 9, e102108.	2.5	465
7	Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environmental Pollution, 2010, 158, 41-47.	7.5	384
8	Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology, 2010, 269, 182-189.	4.2	302
9	Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells <i>in vitro</i> : A comparative review. Nanotoxicology, 2014, 8, 57-71.	3.0	297
10	Particle-Cell Contact Enhances Antibacterial Activity of Silver Nanoparticles. PLoS ONE, 2013, 8, e64060.	2.5	208
11	Biotests and Biosensors for Ecotoxicology of Metal Oxide Nanoparticles: A Minireview. Sensors, 2008, 8, 5153-5170.	3.8	193
12	Toxicity of 11 Metal Oxide Nanoparticles to Three Mammalian Cell Types <i>In V.itro</i> . Current Topics in Medicinal Chemistry, 2015, 15, 1914-1929.	2.1	190
13	Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: Effects on Escherichia coli cells and fatty acids. Journal of Photochemistry and Photobiology B: Biology, 2015, 142, 178-185.	3.8	190
14	Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environmental Pollution, 2012, 169, 81-89.	7.5	180
15	Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Analytical and Bioanalytical Chemistry, 2010, 398, 701-716.	3.7	175
16	Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environmental Science: Nano, 2015, 2, 630-644.	4.3	174
17	A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnology, 2009, 9, 41.	3.3	164
18	Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: A transmission electron microscopy study. Water Research, 2011, 45, 179-190.	11.3	159

#	Article	IF	CITATIONS
19	Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: Comparison with published data and QSARs. Chemosphere, 2011, 84, 1310-1320.	8.2	154
20	High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles. Toxicology in Vitro, 2008, 22, 1412-1417.	2.4	144
21	Mapping the Dawn of Nanoecotoxicological Research. Accounts of Chemical Research, 2013, 46, 823-833.	15.6	143
22	Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biology and Biochemistry, 2002, 34, 1439-1447.	8.8	138
23	Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environmental Science and Pollution Research, 2013, 20, 3456-3463.	5.3	116
24	NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials. Beilstein Journal of Nanotechnology, 2015, 6, 1788-1804.	2.8	116
25	Exposure to CuO Nanoparticles Changes the Fatty Acid Composition of Protozoa <i>Tetrahymena thermophila</i> . Environmental Science & amp; Technology, 2011, 45, 6617-6624.	10.0	105
26	MEIC Evaluation of Acute Systemic Toxicity. ATLA Alternatives To Laboratory Animals, 1996, 24, 273-311.	1.0	102
27	MEIC Evaluation of Acute Systemic Toxicity. ATLA Alternatives To Laboratory Animals, 1998, 26, 617-658.	1.0	101
28	Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Science of the Total Environment, 2020, 707, 136073.	8.0	100
29	Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosensors and Bioelectronics, 2007, 22, 1396-1402.	10.1	96
30	A novel method for comparison of biocidal properties of nanomaterials to bacteria, yeasts and algae. Journal of Hazardous Materials, 2015, 286, 75-84.	12.4	94
31	Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere, 2004, 55, 147-156.	8.2	93
32	Glucose-Limited fed-batch cultivation ofEscherichia coli with computer-controlled fixed growth rate. Biotechnology and Bioengineering, 1990, 35, 312-319.	3.3	90
33	Potential of Hyperspectral Imaging Microscopy for Semi-quantitative Analysis of Nanoparticle Uptake by Protozoa. Environmental Science & Technology, 2014, 48, 8760-8767.	10.0	84
34	Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in Escherichia coli and Pseudomonas aeruginosa. International Journal of Nanomedicine, 2018, Volume 13, 6779-6790.	6.7	82
35	Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID. Nanotoxicology, 2016, 10, 1229-1242.	3.0	78
36	Ecotoxicological study of Lithuanian and Estonian wastewaters: selection of the biotests, and correspondence between toxicity and chemical-based indices. Aquatic Toxicology, 2003, 63, 27-41.	4.0	75

#	Article	IF	CITATIONS
37	Ecotoxicological effects of different glyphosate formulations. Applied Soil Ecology, 2013, 72, 215-224.	4.3	70
38	Toxicity of CuO Nanoparticles to Yeast <i>Saccharomyces cerevisiae</i> BY4741 Wild-Type and Its Nine Isogenic Single-Gene Deletion Mutants. Chemical Research in Toxicology, 2013, 26, 356-367.	3.3	67
39	Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today, 2021, 39, 101184.	11.9	67
40	Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors. Chemosphere, 2006, 64, 1910-1919.	8.2	65
41	Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans. Science of the Total Environment, 2018, 642, 1100-1107.	8.0	65
42	Antimicrobial potency of differently coated 10 and 50†nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces, 2018, 170, 401-410.	5.0	64
43	The computer-controlled continuous culture of Escherichia coli with smooth change of dilution rate (A-stat). Journal of Microbiological Methods, 1995, 24, 145-153.	1.6	63
44	Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata. Chemosphere, 2014, 96, 23-32.	8.2	59
45	Potential hazard of nanoparticles: From properties to biological and environmental effects. Toxicology, 2010, 269, 89-91.	4.2	58
46	Proactive Approach for Safe Use of Antimicrobial Coatings in Healthcare Settings: Opinion of the COST Action Network AMiCI. International Journal of Environmental Research and Public Health, 2017, 14, 366.	2.6	58
47	MEIC Evaluation of Acute Systemic Toxicity. ATLA Alternatives To Laboratory Animals, 1996, 24, 251-272.	1.0	58
48	BIOTESTS AND BIOSENSORS IN ECOTOXICOLOGICAL RISK ASSESSMENT OF FIELD SOILS POLLUTED WITH ZINC, LEAD, AND CADMIUM. Environmental Toxicology and Chemistry, 2005, 24, 2973.	4.3	56
49	The growth rate control in Escherichia coli at near to maximum growth rates: the A-stat approach. Antonie Van Leeuwenhoek, 1997, 71, 217-230.	1.7	55
50	The toxicity and biodegradability of eight main phenolic compounds characteristic to the oil-shale industry wastewaters: A test battery approach. Environmental Toxicology, 2000, 15, 431-442.	4.0	54
51	The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry. Environmental Science and Pollution Research, 2002, 9, 27-33.	5.3	54
52	LuxCDABE—Transformed Constitutively Bioluminescent Escherichia coli for Toxicity Screening: Comparison with Naturally Luminous Vibrio fischeri. Sensors, 2011, 11, 7865-7878.	3.8	54
53	Toxicity of Nine (Doped) Rare Earth Metal Oxides and Respective Individual Metals to Aquatic Microorganisms Vibrio fischeri and Tetrahymena thermophila. Materials, 2017, 10, 754.	2.9	54
54	MEIC Evaluation of Acute Systemic Toxicity. ATLA Alternatives To Laboratory Animals, 1998, 26, 131-183.	1.0	54

#	Article	IF	CITATIONS
55	Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria. Sensors, 2008, 8, 6899-6923.	3.8	53
56	Bacterial polysaccharide levan as stabilizing, non-toxic and functional coating material for microelement-nanoparticles. Carbohydrate Polymers, 2016, 136, 710-720.	10.2	53
57	Potential Hazard of Lanthanides and Lanthanide-Based Nanoparticles to Aquatic Ecosystems: Data Gaps, Challenges and Future Research Needs Derived from Bibliometric Analysis. Nanomaterials, 2020, 10, 328.	4.1	51
58	MEIC Evaluation of Acute Systemic Toxicity. ATLA Alternatives To Laboratory Animals, 1998, 26, 93-129.	1.0	50
59	Upon Exposure to Cu Nanoparticles, Accumulation of Copper in the Isopod <i>Porcellio scaber</i> Is Due to the Dissolved Cu Ions Inside the Digestive Tract. Environmental Science & Technology, 2012, 46, 12112-12119.	10.0	48
60	Rapid in situ assessment of Cu-ion mediated effects and antibacterial efficacy of copper surfaces. Scientific Reports, 2018, 8, 8172.	3.3	48
61	Selection of resistance by antimicrobial coatings in the healthcare setting. Journal of Hospital Infection, 2020, 106, 115-125.	2.9	48
62	Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity. Nanotechnology, 2013, 24, 345101.	2.6	47
63	The Effect of Composition of Different Ecotoxicological Test Media on Free and Bioavailable Copper from CuSO4 and CuO Nanoparticles: Comparative Evidence from a Cu-Selective Electrode and a Cu-Biosensor. Sensors, 2011, 11, 10502-10521.	3.8	45
64	An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data. Environment International, 2016, 87, 20-32.	10.0	45
65	Environmental safety data on CuO and TiO2 nanoparticles for multiple algal species in natural water: Filling the data gaps for risk assessment. Science of the Total Environment, 2019, 647, 973-980.	8.0	45
66	Potency of (doped) rare earth oxide particles and their constituent metals to inhibit algal growth and induce direct toxic effects. Science of the Total Environment, 2017, 593-594, 478-486.	8.0	43
67	Toxicity profiling of 24 l-phenylalanine derived ionic liquids based on pyridinium, imidazolium and cholinium cations and varying alkyl chains using rapid screening Vibrio fischeri bioassay. Ecotoxicology and Environmental Safety, 2019, 172, 556-565.	6.0	43
68	Ingestion and effects of virgin polyamide microplastics on Chironomus riparius adult larvae and adult zebrafish Danio rerio. Chemosphere, 2020, 259, 127456.	8.2	43
69	Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports. PeerJ, 2019, 7, e6315.	2.0	42
70	Evaluation of the hazard of irregularly-shaped co-polyamide microplastics on the freshwater non-biting midge Chironomus riparius through its life cycle. Chemosphere, 2020, 244, 125487.	8.2	42
71	Antimicrobial Activity of Polyoxometalate Ionic Liquids against Clinically Relevant Pathogens. ChemPlusChem, 2017, 82, 867-871.	2.8	41
72	Mechanisms of toxic action of silver nanoparticles in the protozoan Tetrahymena thermophila : From gene expression to phenotypic events. Environmental Pollution, 2017, 225, 481-489.	7.5	41

#	Article	IF	CITATIONS
73	Dissolution of Silver Nanowires and Nanospheres Dictates Their Toxicity to <i>Escherichia coli</i> . BioMed Research International, 2013, 2013, 1-9.	1.9	40
74	Environmental hazard of oil shale combustion fly ash. Journal of Hazardous Materials, 2012, 229-230, 192-200.	12.4	38
75	Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana Venom with Platelets, Bacterial and Cancer Cells. Toxins, 2013, 5, 203-223.	3.4	38
76	Toxicity of antimony, copper, cobalt, manganese, titanium and zinc oxide nanoparticles for the alveolar and intestinal epithelial barrier cells in vitro. Cytotechnology, 2016, 68, 2363-2377.	1.6	38
77	UVA-induced antimicrobial activity of ZnO/Ag nanocomposite covered surfaces. Colloids and Surfaces B: Biointerfaces, 2018, 169, 222-232.	5.0	37
78	Effects of Rhamnolipids from Pseudomonas aeruginosa DS10-129 on Luminescent Bacteria: Toxicity and Modulation of Cadmium Bioavailability. Microbial Ecology, 2010, 59, 588-600.	2.8	36
79	A case study to optimise and validate the brine shrimp Artemia franciscana immobilisation assay with silver nanoparticles: The role of harmonisation. Environmental Pollution, 2016, 213, 173-183.	7.5	35
80	Pan-European inter-laboratory studies on a panel of in vitro cytotoxicity and pro-inflammation assays for nanoparticles. Archives of Toxicology, 2017, 91, 2315-2330.	4.2	35
81	Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. Scientific Reports, 2020, 10, 13478.	3.3	35
82	i>In VitroToxicity Testing Using Marine Luminescent Bacteria <i>(Photobacterium) Tj ETQq0 0 0 rgBT /Ovo</i>	erlock 10 Tf	50 _{,3} 82 Td (pl
83	Toxicity testing of heavy-metal-polluted soils with algaeSelenastrum capricornutum: A soil suspension assay. Environmental Toxicology, 2004, 19, 396-402.	4.0	33
84	Bioavailability of Cd in 110 polluted topsoils to recombinant bioluminescent sensor bacteria: effect of soil particulate matter. Journal of Soils and Sediments, 2011, 11, 231-237.	3.0	31
85	Uptake, localization and clearance of quantum dots in ciliated protozoa Tetrahymena thermophila. Environmental Pollution, 2014, 190, 58-64.	7.5	31
86	Effects of carbon and silicon nanotubes and carbon nanofibers on marine microalgae Heterosigma akashiwo. Environmental Research, 2018, 166, 473-480.	7.5	30
87	Antibacterial Activity of Positively and Negatively Charged Hematite (α-Fe2O3) Nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fischeri. Nanomaterials, 2021, 11, 652.	4.1	30
88	Impact of surface functionalization on the toxicity and antimicrobial effects of selenium nanoparticles considering different routes of entry. Food and Chemical Toxicology, 2020, 144, 111621.	3.6	28
89	Toxicity of five anilines to crustaceans, protozoa and bacteria. Journal of the Serbian Chemical Society, 2010, 75, 1291-1302.	0.8	27
90	Extracellular conversion of silver ions into silver nanoparticles by protozoan Tetrahymena thermophila. Environmental Sciences: Processes and Impacts, 2013, 15, 244-250.	3.5	26

#	Article	IF	CITATIONS
91	Interacting environmental and chemical stresses under global change in temperate aquatic ecosystems: stress responses, adaptation, and scaling. Regional Environmental Change, 2017, 17, 2061-2077.	2.9	26
92	Evaluation of the potential toxicity of UV-weathered virgin polyamide microplastics to non-biting midge Chironomus riparius. Environmental Pollution, 2021, 287, 117334.	7.5	26
93	Study of toxicity of pesticides using luminescent bacteria. Water Science and Technology, 1996, 33, 147.	2.5	25
94	Biotest— and chemistry-based hazard assessment of soils, sediments and solid wastes. Journal of Soils and Sediments, 2004, 4, 267-275.	3.0	25
95	Stability and toxicity of differently coated selenium nanoparticles under model environmental exposure settings. Chemosphere, 2020, 250, 126265.	8.2	25
96	Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis. Toxicology in Vitro, 2016, 35, 149-162.	2.4	24
97	Ecotoxicity of nanosized magnetite to crustacean Daphnia magna and duckweed Lemna minor. Hydrobiologia, 2017, 798, 141-149.	2.0	24
98	Assessment of the hazard of nine (doped) lanthanides-based ceramic oxides to four aquatic species. Science of the Total Environment, 2018, 612, 1171-1176.	8.0	24
99	Toxicity of 39 MEIC Chemicals to Bioluminescent Photobacteria (The Biotoxâ,,¢ Test): Correlation with Other Test Systems. ATLA Alternatives To Laboratory Animals, 1994, 22, 147-160.	1.0	24
100	Study of the toxic effect of short- and medium-chain monocarboxylic acids on the growth of Saccharomyces cerevisiae using the CO2-auxo-accelerostat fermentation system. International Journal of Food Microbiology, 2006, 111, 206-215.	4.7	22
101	Toxicity of phenolic wastewater to luminescent bacteria and activated sludges. Water Science and Technology, 1996, 33, 139.	2.5	21
102	Predicting the Toxicity of Oil-shale Industry Wastewater by its Phenolic Composition. ATLA Alternatives To Laboratory Animals, 1999, 27, 359-366.	1.0	20
103	Toxicological Investigation of Soils with the Solid-phase Flash Assay: Comparison with Other Ecotoxicological Tests. ATLA Alternatives To Laboratory Animals, 2000, 28, 461-472.	1.0	20
104	Solubility-driven toxicity of CuO nanoparticles to Caco2 cells and Escherichia coli : Effect of sonication energy and test environment. Toxicology in Vitro, 2016, 36, 172-179.	2.4	20
105	Anti-microbial coating innovations to prevent infectious diseases (AMiCI): Cost action ca15114. Bioengineered, 2017, 8, 679-685.	3.2	20
106	Exposure to sublethal concentrations of Co3O4 and Mn2O3 nanoparticles induced elevated metal body burden in Daphnia magna. Aquatic Toxicology, 2017, 189, 123-133.	4.0	20
107	Techniques Used for Analyzing Microplastics, Antimicrobial Resistance and Microbial Community Composition: A Mini-Review. Frontiers in Microbiology, 2021, 12, 603967.	3.5	20
108	Study of the Environmental Hazard Caused by the Oil Shale Industry Solid Waste. ATLA Alternatives To Laboratory Animals, 2001, 29, 259-267.	1.0	19

#	Article	IF	CITATIONS
109	Metal-Containing Nano-Antimicrobials: Differentiating the Impact of Solubilized Metals and Particles. , 2012, , 253-290.		19
110	Combined Effects of Test Media and Dietary Algae on the Toxicity of CuO and ZnO Nanoparticles to Freshwater Microcrustaceans Daphnia magna and Heterocypris incongruens: Food for Thought. Nanomaterials, 2019, 9, 23.	4.1	19
111	The efficiency of different phenol-degrading bacteria and activated sludges in detoxification of phenolic leachates. Chemosphere, 1998, 37, 301-318.	8.2	18
112	Analysis of sorption and bioavailability of different species of mercury on model soil components using XAS techniques and sensor bacteria. Analytical and Bioanalytical Chemistry, 2005, 382, 1541-1548.	3.7	17
113	Adenylate energy charge during batch culture of Thermoactinomyces vulgaris 42. Archives of Microbiology, 1982, 133, 142-144.	2.2	15
114	Effects of Humic Acids on the Ecotoxicity of Fe3O4 Nanoparticles and Fe-Ions: Impact of Oxidation and Aging. Nanomaterials, 2020, 10, 2011.	4.1	15
115	Laboratory study of bioremediation of rocket fuel-polluted groundwater. Water Research, 1999, 33, 1303-1313.	11.3	14
116	Surface carboxylation or PEGylation decreases CuO nanoparticles' cytotoxicity to human cells in vitro without compromising their antibacterial properties. Archives of Toxicology, 2020, 94, 1561-1573.	4.2	14
117	Virgin and UV-weathered polyamide microplastics posed no effect on the survival and reproduction of <i>Daphnia magna</i> . PeerJ, 0, 10, e13533.	2.0	14
118	Antimicrobial coating innovations to prevent infectious disease: a consensus view from the AMiCl COST Action. Journal of Hospital Infection, 2020, 105, 116-118.	2.9	13
119	Environmental effects of soil contamination by shale fuel oils. Environmental Science and Pollution Research, 2014, 21, 11320-11330.	5.3	12
120	Environmental feedbacks in temperate aquatic ecosystems under global change: why do we need to consider chemical stressors?. Regional Environmental Change, 2017, 17, 2079-2096.	2.9	11
121	On characterization of the growth of Escherichia coli in batch culture. Archives of Microbiology, 1983, 135, 12-15.	2.2	9
122	Rapid Screening for Soil Ecotoxicity with a Battery of Luminescent Bacteria Tests. ATLA Alternatives To Laboratory Animals, 2007, 35, 101-110.	1.0	9
123	Evaluation of the effect of test medium on total Cu body burden of nano CuO-exposed Daphnia magna: A TXRF spectroscopy study. Environmental Pollution, 2017, 231, 1488-1496.	7.5	8
124	Polyamide microplastic exposure elicits rapid, strong and genome-wide evolutionary response in the freshwater non-biting midge Chironomus riparius. Chemosphere, 2022, 299, 134452.	8.2	8
125	Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties. Journal of Magnetism and Magnetic Materials, 2017, 429, 299-304.	2.3	7
126	Enhanced Visible and Ultraviolet Light-Induced Gas-Phase Photocatalytic Activity of TiO2 Thin Films Modified by Increased Amount of Acetylacetone in Precursor Solution for Spray Pyrolysis. Catalysts, 2020, 10, 1011.	3.5	7

#	Article	IF	CITATIONS
127	Sample preparation considerations for surface and crystalline properties and ecotoxicity of bare and silica-coated magnetite nanoparticles. RSC Advances, 2021, 11, 32227-32235.	3.6	7
128	An Integrated Data-Driven Strategy for Safe-by-Design Nanoparticles: The FP7 MODERN Project. Advances in Experimental Medicine and Biology, 2017, 947, 257-301.	1.6	6
129	Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms. Archives of Environmental Contamination and Toxicology, 2016, 70, 383-391.	4.1	5
130	Ecotoxicity profiling of a library of 24Âl-phenylalanine derived surface-active ionic liquids (SAlLs). Sustainable Chemistry and Pharmacy, 2021, 19, 100369.	3.3	5
131	Use of the luciferin-luciferase assay of ATP for measuring the bacterial growth: Application to Escherichia coli. Acta Biotechnologica, 1988, 8, 93-98.	0.9	4
132	Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials. Nanoscale Research Letters, 2018, 13, 111.	5.7	4
133	Application of the Ames Genotoxicity Assay and the Bioluminescent Toxicity Assay in the Testing of Urine Samples. ATLA Alternatives To Laboratory Animals, 1993, 21, 225-232.	1.0	4
134	Visible-Light Active Flexible and Durable Photocatalytic Antibacterial Ethylene-co-vinyl Acetate—Ag/AgCl/α-Fe2O3 Composite Coating. Nanomaterials, 2022, 12, 1984.	4.1	4
135	Toxicological information on chemicals published in the Russian language: Contribution to REACH and 3Rs. Toxicology, 2009, 262, 27-37.	4.2	3
136	Illuminating nano-bio interactions: A spectroscopic perspective. MRS Bulletin, 2014, 39, 990-995.	3.5	3
137	Charge and size-dependent toxicity of silver nanoparticles to yeast cells. Toxicology Letters, 2014, 229, S194-S195.	0.8	3
138	Antimicrobial activity of polyoxometalate ionic liquids (POM-ILs) against clinically relevant pathogens. Toxicology Letters, 2017, 280, S193.	0.8	3
139	Biodiversity and functional trait effects on copper toxicity in a proof-of-concept multispecies microalgal assay. Algal Research, 2021, 55, 102204.	4.6	3
140	Thiourea Organocatalysts as Emerging Chiral Pollutants: En Route to Porphyrin-Based (Chir)Optical Sensing. Chemosensors, 2021, 9, 278.	3.6	3
141	Long-Term Toxicity of Gadolinium to the Freshwater Crustacean Daphnia magna. Bulletin of Environmental Contamination and Toxicology, 2021, , 1.	2.7	3
142	Cubic Iron Core–Shell Nanoparticles Functionalized to Obtain High-Performance MRI Contrast Agents. Materials, 2022, 15, 2228.	2.9	3
143	Effect of temperature on the ATP pool and adenylate energy charge in Escherichia coli. FEMS Microbiology Letters, 1987, 41, 305-308.	1.8	2
144	Study of the photochemical and phototoxic properties of lonidamine [1-(2,4-dichlorobenzyl)-1H-indazol-3-carboxylic acid]. Journal of Photochemistry and Photobiology B: Biology, 1997, 41, 11-21.	3.8	2

#	Article	IF	CITATIONS
145	Joint Congress of the Scandinavian Society of Cell Toxicology and the Estonian Society of Toxicology. ATLA Alternatives To Laboratory Animals, 1999, 27, 323-324.	1.0	2
146	Mechanisms behind toxicity of 11 metal oxide nanoparticles to alga Pseudokirchneriella subcapitata. Toxicology Letters, 2014, 229, S187.	0.8	2
147	Second Joint Conference of the Estonian Society of Toxicology and the Scandinavian Society for Cell Toxicology. ATLA Alternatives To Laboratory Animals, 2007, 35, 13-14.	1.0	1
148	E-SovTox: An Online Database of the Main Publicly-available Sources of Toxicity Data concerning REACH-relevant Chemicals Published in the Russian Language. ATLA Alternatives To Laboratory Animals, 2010, 38, 297-301.	1.0	1
149	IMPACT OF OIL SHALE OPENCAST MINING AND COMBUSTION ON NARVA RIVER AND ITS TRIBUTARIES: CHEMICAL AND ECOTOXICOLOGICAL CHARACTERISATION. Oil Shale, 2012, 29, 173.	1.0	1
150	Advances in Nanotoxicology: Towards Enhanced Environmental and Physiological Relevance and Molecular Mechanisms. Nanomaterials, 2021, 11, 919.	4.1	1
151	Concentration of lanthanides in the Estonian environment: a screening study. Journal of Hazardous Materials Advances, 2021, 4, 100034.	3.0	1
152	Effect of substituents on the ecotoxicity of anilines and phenols. Toxicology Letters, 2009, 189, S192.	0.8	0
153	New C-type lectin-like protein and 5′-nucleotidase from Vipera lebetina snake venom. Toxicology Letters, 2014, 229, S234.	0.8	0
154	"Safe-by-design―and "toxic-by designâ€; two approaches for design of novel functional nanomaterials. Toxicology Letters, 2014, 229, S11-S12.	0.8	0
155	New challenges for ecotoxicology due to COVID-19 outbreak: focus on metal-based antimicrobials and single-use plastics, lournal of Hazardous Materials Advances, 2022, 6, 100056.	3.0	0