
AntonÃ-n Brož

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4762113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vascular Remodeling of Clinically Used Patches and Decellularized Pericardial Matrices Recellularized with Autologous or Allogeneic Cells in a Porcine Carotid Artery Model. International Journal of Molecular Sciences, 2022, 23, 3310.	4.1	7
2	Magnetic Superporous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Bone Tissue Engineering. Polymers, 2021, 13, 1871.	4.5	5
3	Influence of Drying Method and Argon Plasma Modification of Bacterial Nanocellulose on Keratinocyte Adhesion and Growth. Nanomaterials, 2021, 11, 1916.	4.1	13
4	Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines, 2021, 9, 1137.	3.2	30
5	Cellulose Mesh with Charged Nanocellulose Coatings as a Promising Carrier of Skin and Stem Cells for Regenerative Applications. Biomacromolecules, 2020, 21, 4857-4870.	5.4	19
6	Bioreactor Processed Stromal Cell Seeding and Cultivation on Decellularized Pericardium Patches for Cardiovascular Use. Applied Sciences (Switzerland), 2020, 10, 5473.	2.5	7
7	A new way to prepare gold nanoparticles by sputtering – Sterilization, stability and other properties. Materials Science and Engineering C, 2020, 115, 111087.	7.3	14
8	In vitro and in vivo testing of nanofibrous membranes doped with alaptide and L-arginine for wound treatment. Biomedical Materials (Bristol), 2020, 15, 065023.	3.3	10
9	Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine. Nanomaterials, 2020, 10, 196.	4.1	117
10	<p>A two-layer skin construct consisting of a collagen hydrogel reinforced by a fibrin-coated polylactide nanofibrous membrane</p> . International Journal of Nanomedicine, 2019, Volume 14, 5033-5050.	6.7	30
11	Carbon nanotube/iron oxide hybrid particles and their PCL-based 3D composites for potential bone regeneration. Materials Science and Engineering C, 2019, 104, 109913.	7.3	30
12	Alterations to the adhesion, growth and osteogenic differentiation of human osteoblast-like cells on nanofibrous polylactide scaffolds with diamond nanoparticles. Diamond and Related Materials, 2019, 97, 107421.	3.9	9
13	Morphology of a fibrin nanocoating influences dermal fibroblast behavior. International Journal of Nanomedicine, 2018, Volume 13, 3367-3380.	6.7	13
14	Osteoblast adhesion, migration, and proliferation variations on chemically patterned nanocrystalline diamond films evaluated by liveâ€cell imaging. Journal of Biomedical Materials Research - Part A, 2017, 105, 1469-1478.	4.0	13
15	Uptake and intracellular accumulation of diamond nanoparticles – a metabolic and cytotoxic study. Beilstein Journal of Nanotechnology, 2017, 8, 1649-1657.	2.8	8
16	Nanocarbon Allotropes-Graphene and Nanocrystalline Diamond-Promote Cell Proliferation. Small, 2016, 12, 2499-2509.	10.0	27
17	The impact of doped silicon quantum dots on human osteoblasts. RSC Advances, 2016, 6, 63403-63413.	3.6	31
18	Stochastic model explains formation of cell arrays on H/O-diamond patterns. Biointerphases, 2015, 10, 041006.	1.6	2

ANTONÃN BROž

#	Article	IF	CITATIONS
19	Modulated surface of single-layer graphene controls cell behavior. Carbon, 2014, 72, 207-214.	10.3	10
20	Silicon nanocrystals and nanodiamonds in live cells: photoluminescence characteristics, cytotoxicity and interaction with cell cytoskeleton. RSC Advances, 2014, 4, 10334-10342.	3.6	15
21	Influence of oxygen and hydrogen treated graphene on cell adhesion in the presence or absence of fetal bovine serum. Physica Status Solidi (B): Basic Research, 2012, 249, 2503-2506.	1.5	6
22	ZnO hedgehog-like structures for control cell cultivation. Applied Surface Science, 2012, 258, 3485-3489.	6.1	17
23	Influence of the fetal bovine serum proteins on the growth of human osteoblast cells on graphene. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3001-3007.	4.0	31
24	Function of thin film nanocrystalline diamond–protein SGFET independent of grain size. Sensors and Actuators B: Chemical, 2012, 166-167, 239-245.	7.8	20
25	Controlled oxygen plasma treatment of single-walled carbon nanotube films improves osteoblastic cells attachment and enhances their proliferation. Carbon, 2011, 49, 2926-2934.	10.3	25
26	Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon, 2010, 48, 4323-4329.	10.3	394
27	Assembly of osteoblastic cell micro-arrays on diamond guided by protein pre-adsorption. Diamond and Related Materials, 2010, 19, 153-157.	3.9	18
28	Strong influence of hierarchically structured diamond nanotopography on adhesion of human osteoblasts and mesenchymal cells. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2038-2041.	1.8	19
29	Fabrication of nanoâ€structured diamond films for SAOSâ€2 cell cultivation. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2033-2037.	1.8	13
30	Study on cellular adhesion of human osteoblasts on nanoâ€structured diamond films. Physica Status Solidi (B): Basic Research, 2009, 246, 2774-2777.	1.5	18
31	Longâ€ŧerm adsorption of fetal bovine serum on H/Oâ€ŧerminated diamond studied <i>in situ</i> by atomic force microscopy. Physica Status Solidi (B): Basic Research, 2009, 246, 2832-2835.	1.5	29
32	The Application of Nanodiamond in Biotechnology and Tissue Engineering. , 0, , .		5
33	Nanofibrous Scaffolds for Skin Tissue Engineering and Wound Healing Based on Synthetic Polymers. , 0, , .		11