Deborah Mielewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4762087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid composites with engineered polysaccharides for automotive lightweight. Composites Part C: Open Access, 2022, 7, 100222.	3.2	10
2	Biocarbon: A lightweight, functional filler for underâ€theâ€hood automotive composites. Polymer Composites, 2022, 43, 2034-2046.	4.6	4
3	Improving Thermal Reprocessability of Commercial Flexible Polyurethane Foam by Vitrimer Modification of the Hard Segments. ACS Applied Polymer Materials, 2022, 4, 5056-5067.	4.4	8
4	Flexible polyurethane foams reinforced with organic and inorganic nanofillers. Journal of Applied Polymer Science, 2021, 138, 49983.	2.6	20
5	Ocean plastics: environmental implications and potential routes for mitigation – a perspective. RSC Advances, 2021, 11, 21447-21462.	3.6	48
6	Biobased flexible polyurethane foams manufactured from lactideâ€based polyesterâ€ether polyols for automotive applications. Journal of Applied Polymer Science, 2021, 138, 50690.	2.6	12
7	Sustainable Lightweight Insulation Materials from Textile-Based Waste for the Automobile Industry. Materials, 2021, 14, 1241.	2.9	28
8	Effect of a Small Amount of Synthetic Fiber on Performance of Biocarbonâ€Filled Nylonâ€Based Hybrid Biocomposites. Macromolecular Materials and Engineering, 2021, 306, 2000680.	3.6	9
9	Graphene oxide incorporated waste wool/PAN hybrid fibres. Scientific Reports, 2021, 11, 12068.	3.3	17
10	A Facile Approach of Fabricating Electrically Conductive Knitted Fabrics Using Graphene Oxide and Textile-Based Waste Material. Polymers, 2021, 13, 3003.	4.5	8
11	Synthesis and characterization of novel nitrogen doped biocarbons from distillers dried grains with solubles (DDGS) for supercapacitor applications. Bioresource Technology Reports, 2020, 9, 100375.	2.7	12
12	Hybrid celluloseâ€inorganic reinforcement polypropylene composites: Lightweight materials for automotive applications. Polymer Composites, 2020, 41, 1074-1089.	4.6	34
13	Sustainable composites from poly(3-hydroxybutyrate) (PHB) bioplastic and agave natural fibre. Green Chemistry, 2020, 22, 3906-3916.	9.0	51
14	Experimental Design of Sustainable 3D-Printed Poly(Lactic Acid)/Biobased Poly(Butylene Succinate) Blends via Fused Deposition Modeling. ACS Sustainable Chemistry and Engineering, 2019, 7, 14460-14470.	6.7	43
15	Hybrid Cellulose-Glass Fiber Composites for Automotive Applications. Materials, 2019, 12, 3189.	2.9	32
16	Heat-treated blue agave fiber composites. Composites Part B: Engineering, 2019, 165, 712-724.	12.0	22
17	Strategy To Improve Printability of Renewable Resource-Based Engineering Plastic Tailored for FDM Applications. ACS Omega, 2019, 4, 20297-20307.	3.5	25
18	A case for closed-loop recycling of post-consumer PET for automotive foams. Waste Management, 2018, 71, 97-108.	7.4	23

DEBORAH MIELEWSKI

#	Article	IF	CITATIONS
19	Closed-loop recycling of polyamide12 powder from selective laser sintering into sustainable composites. Journal of Cleaner Production, 2018, 195, 765-772.	9.3	24
20	Blue-Agave Fiber-Reinforced Polypropylene Composites for Automotive Applications. BioResources, 2017, 13, .	1.0	17
21	Flexible polyurethane foams formulated with polyols derived from waste carbon dioxide. Journal of Applied Polymer Science, 2016, 133, .	2.6	38
22	Effects of soy-based oils on the tensile behavior of EPDM rubber. Polymer Testing, 2015, 46, 33-40.	4.8	15
23	Mechanical behavior of microcellular, natural fiber reinforced composites at various strain rates and temperatures. Polymer Testing, 2014, 37, 148-155.	4.8	11
24	High strain-rate behavior of natural fiber-reinforced polymer composites. Journal of Composite Materials, 2012, 46, 1051-1065.	2.4	48
25	Rate dependencies and energy absorption characteristics of nanoreinforced, biofiber, and microcellular polymer composites. Polymer Composites, 2011, 32, 1423-1429.	4.6	16
26	A Study on Biocomposites from Recycled Newspaper Fiber and Poly(lactic acid). Industrial & Engineering Chemistry Research, 2005, 44, 5593-5601.	3.7	236
27	Exfoliation and dispersion enhancement in polypropylene nanocomposites by in-situ melt phase ultrasonication. Polymer Engineering and Science, 2004, 44, 1773-1782.	3.1	87
28	Weld line morphology of injection molded polypropylene. Polymer Engineering and Science, 1998, 38, 2020-2028.	3.1	32
29	A novel approach to paint sludge recycling: Reclaiming of paint sludge components as ceramic composites and their applications in reinforcement of metals and polymers,. Journal of Materials Research, 1998, 13, 53-60.	2.6	27
30	Estimation of diffusion and solubility coefficients for water and CO2 in reaction injection molded parts. Polymer Composites, 1996, 17, 649-655.	4.6	2
31	Reactions of unconverted isocyanate in molded RIM parts and their implications to outgassing. Polymer Composites, 1996, 17, 656-665.	4.6	Ο
32	Processing and Characterization of Thermally Cross-Linkable Poly[p-phenyleneterephthalamide-co-p-1,2-dihydrocyclobutaphenyleneterephthalamide] (PPTA-co-XTA) Copolymer Fibers. Macromolecules, 1995, 28, 3301-3312.	4.8	29
33	Outgassing Phenomenon in Reaction Injection Molded Parts. Journal of Reinforced Plastics and Composites, 1993, 12, 1239-1249.	3.1	2
34	Photodegradation and photostabilization of urethane crosslinked coatings. Industrial & Engineering Chemistry Research, 1991, 30, 2482-2487.	3.7	31
35	Using Nitroxide Decay to Study the Photooxidation Kinetics of Automotive Topcoat Enamels. Free Radical Research Communications, 1990, 10, 123-133.	1.8	1
36	End groups in acrylic copolymers. 2. Mechanisms of incorporation of end groups and relationship to photoinitiation rates. Macromolecules, 1988, 21, 1604-1607.	4.8	27