## Jean-Marc Campagne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4761875/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Copper Nanoparticles with a Tunable Size: Implications for Plasmonic Catalysis. ACS Applied Nano<br>Materials, 2022, 5, 2839-2847.                                                                                                                                                     | 5.0  | 7         |
| 2  | Intertwined Analytical, Experimental and Theoretical Studies on the Formation and Structure of a<br>Copper Dienolate. Chemistry - A European Journal, 2021, 27, 7942-7950.                                                                                                             | 3.3  | 3         |
| 3  | Enantioselective Catalytic C-H Amidations: An Highlight. Catalysts, 2021, 11, 471.                                                                                                                                                                                                     | 3.5  | 12        |
| 4  | Dynamic Kinetic Resolution Processes Based on the Switchable Configurational Instability of Allenyl<br>Copper Reagents. Organic Letters, 2021, 23, 6305-6310.                                                                                                                          | 4.6  | 4         |
| 5  | Stereoselective Construction of ( <i>E,Z</i> )â€1,3â€Dienes and Its Application in Natural Product Synthesis.<br>Advanced Synthesis and Catalysis, 2020, 362, 5532-5575.                                                                                                               | 4.3  | 43        |
| 6  | DNAâ€Based Asymmetric Inverse Electronâ€Demand Heteroâ€Diels–Alder. Chemistry - A European Journal,<br>2020, 26, 3519-3523.                                                                                                                                                            | 3.3  | 10        |
| 7  | The debut of chiral cyclic (alkyl)(amino)carbenes (CAACs) in enantioselective catalysis. Chemical<br>Science, 2019, 10, 7807-7811.                                                                                                                                                     | 7.4  | 41        |
| 8  | Synthetic Studies toward the Total Synthesis of Tautomycetin. Journal of Organic Chemistry, 2019, 84, 12344-12357.                                                                                                                                                                     | 3.2  | 5         |
| 9  | Acylâ€Imidazoles: A Privileged Ester Surrogate for Enantioselective Synthesis. ChemCatChem, 2019, 11,<br>5705-5722.                                                                                                                                                                    | 3.7  | 15        |
| 10 | Prospect of Thiazoleâ€based γâ€Peptide Foldamers in Enamine Catalysis: Exploration of the Nitroâ€Michael<br>Addition. Chemistry - A European Journal, 2019, 25, 7396-7401.                                                                                                             | 3.3  | 14        |
| 11 | Copper-Catalyzed Asymmetric Conjugate Additions of Bis(pinacolato)diboron and Dimethylzinc to<br>Acyl- <i>N</i> -methylimidazole Michael Acceptors: A Highly Stereoselective Unified Strategy for<br>1,3,5, <i>n</i> ) (OH, Me) Motif Synthesis. Organic Letters, 2019, 21, 1872-1876. | 4.6  | 15        |
| 12 | Iron-Catalyzed Enantioselective Intramolecular Inverse Electron-Demand Hetero Diels–Alder<br>Reactions: An Access to Bicyclic Dihydropyran Derivatives. Organic Letters, 2019, 21, 10007-10012.                                                                                        | 4.6  | 8         |
| 13 | Odilorhabdins, Antibacterial Agents that Cause Miscoding by Binding at a New Ribosomal Site.<br>Molecular Cell, 2018, 70, 83-94.e7.                                                                                                                                                    | 9.7  | 96        |
| 14 | Diastereoselective Palladium-Catalyzed (3 + 2)-Cycloadditions from Cyclic Imines and Vinyl Aziridines.<br>Organic Letters, 2018, 20, 1444-1447.                                                                                                                                        | 4.6  | 46        |
| 15 | Mechanism of Enolate Transfer between Si and Cu. Chemistry - A European Journal, 2018, 24, 6617-6624.                                                                                                                                                                                  | 3.3  | 10        |
| 16 | Catalytic nucleophilic â€~umpoled' Ï€-allyl reagents. Chemical Society Reviews, 2018, 47, 1159-1173.                                                                                                                                                                                   | 38.1 | 105       |
| 17 | Vinyl-aziridines and cyclopropanes in Pd-catalyzed (3+2)-cycloaddition reactions with cyclic<br>N-sulfonyl imines. Tetrahedron, 2018, 74, 6497-6511.                                                                                                                                   | 1.9  | 14        |
| 18 | Total Synthesis and Structure–Activity Relationships Study of Odilorhabdins, a New Class of Peptides<br>Showing Potent Antibacterial Activity. Journal of Medicinal Chemistry, 2018, 61, 7814-7826.                                                                                    | 6.4  | 20        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Stereospecific Hydrogenolysis of Lactones: Application to the Total Syntheses of<br>( <i>R</i> )- <i>ar</i> -Himachalene and ( <i>R</i> )-Curcumene. Journal of Organic Chemistry, 2017, 82,<br>4737-4743.                        | 3.2  | 10        |
| 20 | Recent Approaches to the Synthesis of Pyrimidine Derivatives. European Journal of Organic Chemistry, 2017, 2856-2865.                                                                                                             | 2.4  | 66        |
| 21 | Non-Covalent Organocatalyzed Domino Reactions Involving Oxindoles: Recent Advances. Molecules, 2017, 22, 1636.                                                                                                                    | 3.8  | 22        |
| 22 | Nonclassical Routes for Amide Bond Formation. Chemical Reviews, 2016, 116, 12029-12122.                                                                                                                                           | 47.7 | 679       |
| 23 | Copperâ€Catalyzed Asymmetric Conjugate Addition of Dimethylzinc to Acylâ€ <i>N</i> â€methylimidazole<br>Michael Acceptors: Scope, Limitations and Iterative Reactions. Advanced Synthesis and Catalysis, 2016,<br>358, 2519-2540. | 4.3  | 29        |
| 24 | Brook/Elimination/Aldol Reaction (BEAR) Sequence for the Direct Preparation of Fluorinated Aldols<br>from β,βâ€Đifluoroâ€Ì±â€(trimethylsilyl)alcohols. Advanced Synthesis and Catalysis, 2015, 357, 3091-3097.                    | 4.3  | 12        |
| 25 | Copperâ€Catalyzed Asymmetric Conjugate Addition of Dimethylzinc to Acylâ€ <i>N</i> â€methylimidazole<br>Michael Acceptors: a Powerful Synthetic Platform. Angewandte Chemie - International Edition, 2015,<br>54, 11830-11834.    | 13.8 | 58        |
| 26 | Efficient and Practical Procedure for the Esterification of the Free α-Carboxylic Acid of Amino Acid<br>Residues with β-(Trimethylsilyl)ethoxymethyl Chloride and Triisopropylsilyl Chloride. Synthesis, 2014,<br>46, 3075-3084.  | 2.3  | 1         |
| 27 | Inverse Peptide Synthesis via Activated αâ€Aminoesters. Angewandte Chemie - International Edition, 2014,<br>53, 5389-5393.                                                                                                        | 13.8 | 40        |
| 28 | Tandem Reactions Involving 1-Silyl-3-Boryl-2-Alkenes. New Access to (Z)-1-Fluoro-1-Alkenes, Allyl<br>Fluorides, and Diversely α-Substituted Allylboronates. Organic Letters, 2013, 15, 906-909.                                   | 4.6  | 28        |
| 29 | Chiral Aryl–Copper(III) Electrophiles: New Opportunities in Catalytic Enantioselective Arylations and Domino Processes. Angewandte Chemie - International Edition, 2012, 51, 10934-10935.                                         | 13.8 | 27        |
| 30 | Stereoselective and Catalytic Access to β-Enaminones: An Entry to Pyrimidines. Journal of Organic Chemistry, 2012, 77, 9205-9220.                                                                                                 | 3.2  | 65        |
| 31 | Transition-Metal-Catalyzed Uninterrupted Four-Step Sequence to Access Trisubstituted Isoxazoles.<br>Organic Letters, 2011, 13, 6418-6421.                                                                                         | 4.6  | 47        |
| 32 | Gold-catalyzed propargylic substitutions: Scope and synthetic developments. Beilstein Journal of<br>Organic Chemistry, 2011, 7, 866-877.                                                                                          | 2.2  | 80        |
| 33 | FeCl3-catalyzed addition of nitrogen and 1,3-dicarbonyl nucleophiles to olefins. Journal of Organometallic Chemistry, 2011, 696, 296-304.                                                                                         | 1.8  | 32        |
| 34 | Chan–Lam–Evans Coupling of Cbzâ€₱rotected Histidines. European Journal of Organic Chemistry, 2010,<br>2010, 3811-3814.                                                                                                            | 2.4  | 18        |
| 35 | Organocatalyzed Cyclopropanation of αâ€Substituted α,βâ€Unsaturated Aldehydes: Enantioselective<br>Synthesis of Cyclopropanes Bearing a Chiral Quaternary Center. Chemistry - A European Journal, 2010,<br>16, 7875-7880.         | 3.3  | 75        |
| 36 | A Versatile Iron atalyzed Protocol for the Oneâ€Pot Synthesis of Isoxazoles or Isoxazolines from the Same Propargylic Alcohols. Chemistry - A European Journal, 2010, 16, 12207-12213.                                            | 3.3  | 53        |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Highly Diastereoselective Baldwin Rearrangement of Isoxazolines into <i>cis</i> -Acylaziridines.<br>Journal of Organic Chemistry, 2010, 75, 6050-6053.                                                     | 3.2  | 44        |
| 38 | A Dual Goldâ€Iron Catalysis for a Oneâ€Pot Synthesis of 2,3â€Dihydroisoxazoles from Propargylic Alcohols<br>and Nâ€Protected Hydroxylamines. Advanced Synthesis and Catalysis, 2009, 351, 1991-1998.       | 4.3  | 66        |
| 39 | Gold(III)-catalyzed direct nucleophilic substitution of propargylic alcohols. Tetrahedron, 2009, 65, 1758-1766.                                                                                            | 1.9  | 126       |
| 40 | 1,5-Enyne Metathesis. Journal of the American Chemical Society, 2008, 130, 1562-1563.                                                                                                                      | 13.7 | 67        |
| 41 | Synthesis of the Central Tryptophan-Leucine Residue of Celogentin C. Synlett, 2008, 2008, 1532-1536.                                                                                                       | 1.8  | 33        |
| 42 | Total Syntheses of Lysobactin (Katanosinâ€B). Angewandte Chemie - International Edition, 2007, 46,<br>8548-8552.                                                                                           | 13.8 | 11        |
| 43 | Intermolecular FeCl3-Catalyzed Hydroamination of Styrenes. European Journal of Organic Chemistry, 2007, 2601-2603.                                                                                         | 2.4  | 92        |
| 44 | A Stereoselective Approach to 1,3â€Amino Alcohols Protected as Cyclic Carbamates: Kinetic vs.<br>Thermodynamic Control. European Journal of Organic Chemistry, 2007, 2007, 4293-4297.                      | 2.4  | 25        |
| 45 | Iron–Palladium Association in the Preparation of Indoles and Oneâ€Pot Synthesis of<br>Bis(indolyl)methanes. European Journal of Organic Chemistry, 2007, 2007, 5332-5335.                                  | 2.4  | 65        |
| 46 | Synthetic Studies on Macrolactin A: Construction of C4â^'C24 Fragment. Journal of Organic Chemistry, 2007, 72, 3543-3549.                                                                                  | 3.2  | 26        |
| 47 | α,β-Unsaturated δ-Lactones from Copper-Catalyzed Asymmetric Vinylogous Mukaiyama Reactions of<br>Aldehydes: Scope and Mechanistic Insights. Chemistry - A European Journal, 2006, 12, 8358-8366.           | 3.3  | 74        |
| 48 | Lewis Acid-Catalyzed Direct Amination of Benzhydryl Alcohols. Advanced Synthesis and Catalysis, 2006, 348, 2063-2067.                                                                                      | 4.3  | 145       |
| 49 | Catalytic and Asymmetric Vinylogous Mukaiyama Reactions on Aliphatic Ketones:Â Formal Asymmetric<br>Synthesis of Taurospongin A. Journal of the American Chemical Society, 2005, 127, 7288-7289.           | 13.7 | 96        |
| 50 | Gold(III)-Catalyzed Nucleophilic Substitution of Propargylic Alcohols. Journal of the American<br>Chemical Society, 2005, 127, 14180-14181.                                                                | 13.7 | 293       |
| 51 | Catalytic Asymmetric Access to α,β Unsaturated Î′-Lactones through a Vinylogous Aldol Reaction:<br>Application to the Total Synthesis of the Prelog-Djerassi Lactone. Organic Letters, 2001, 3, 3807-3810. | 4.6  | 54        |
| 52 | Catalytic Asymmetric Vinylogous Mukaiyama-Aldol (CAVM) Reactions:Â The Enolate Activation. Journal<br>of Organic Chemistry, 2001, 66, 4293-4298.                                                           | 3.2  | 80        |
| 53 | Towards the Total Synthesis of Octalactin A. Synlett, 2000, 2000, 221-222.                                                                                                                                 | 1.8  | 32        |
| 54 | Catalytic asymmetric vinylogous Mukaiyama (CAVM) reactions: aldehyde activation versus enolate activation. Tetrahedron Letters, 1999, 40, 5507-5509.                                                       | 1.4  | 48        |