Erwin Lamping

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4761606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efflux-Mediated Antifungal Drug Resistance. Clinical Microbiology Reviews, 2009, 22, 291-321.	5.7	483
2	Candida albicans drug resistance – another way to cope with stress. Microbiology (United Kingdom), 2007, 153, 3211-3217.	0.7	183
3	Characterization of Three Classes of Membrane Proteins Involved in Fungal Azole Resistance by Functional Hyperexpression in Saccharomyces cerevisiae. Eukaryotic Cell, 2007, 6, 1150-1165.	3.4	173
4	Mas37p, a novel receptor subunit for protein import into mitochondria Journal of Cell Biology, 1995, 129, 25-34.	2.3	172
5	ABC Transporter Cdr1p Contributes More than Cdr2p Does to Fluconazole Efflux in Fluconazole-Resistant <i>Candida albicans</i> Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2008, 52, 3851-3862.	1.4	144
6	Fungal PDR transporters: Phylogeny, topology, motifs and function. Fungal Genetics and Biology, 2010, 47, 127-142.	0.9	141
7	Overexpression of Candida albicans CDR1 , CDR2 , or MDR1 Does Not Produce Significant Changes in Echinocandin Susceptibility. Antimicrobial Agents and Chemotherapy, 2006, 50, 1148-1155.	1.4	123
8	Identification of Nile red as a fluorescent substrate of the Candida albicans ATP-binding cassette transporters Cdr1p and Cdr2p and the major facilitator superfamily transporter Mdr1p. Analytical Biochemistry, 2009, 394, 87-91.	1.1	103
9	Abc1p Is a Multidrug Efflux Transporter That Tips the Balance in Favor of Innate Azole Resistance in <i>Candida krusei</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 354-369.	1.4	93
10	The Monoamine Oxidase A Inhibitor Clorgyline Is a Broad-Spectrum Inhibitor of Fungal ABC and MFS Transporter Efflux Pump Activities Which Reverses the Azole Resistance of Candida albicans and Candida glabrata Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2012, 56, 1508-1515.	1.4	85
11	Inhibition of fungal ABC transporters by unnarmicin A and unnarmicin C, novel cyclic peptides from marine bacterium. Biochemical and Biophysical Research Communications, 2007, 364, 990-995.	1.0	64
12	Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Molecular Microbiology, 2006, 62, 170-186.	1.2	61
13	Specific interactions between the <i>Candida albicans</i> ABC transporter Cdr1p ectodomain and a <scp>d</scp> â€octapeptide derivative inhibitor. Molecular Microbiology, 2012, 85, 747-767.	1.2	41
14	Clinically significant micafungin resistance in Candida albicans involves modification of a glucan synthase catalytic subunit GSC1 (FKS1) allele followed by loss of heterozygosity. Journal of Antimicrobial Chemotherapy, 2010, 65, 842-852.	1.3	39
15	Phosphorylation of Candida glabrata ATP-binding Cassette Transporter Cdr1p Regulates Drug Efflux Activity and ATPase Stability. Journal of Biological Chemistry, 2005, 280, 94-103.	1.6	35
16	Functional analysis of fungal drug efflux transporters by heterologous expression in Saccharomyces cerevisiae. Japanese Journal of Infectious Diseases, 2005, 58, 1-7.	0.5	34
17	Chimeras of Candida albicans Cdr1p and Cdr2p reveal features of pleiotropic drug resistance transporter structure and function. Molecular Microbiology, 2011, 82, 416-433.	1.2	22
18	Small, synthetic, GC-rich mRNA stem-loop modules 5′ proximal to the AUG start-codon predictably tune gene expression in yeast. Microbial Cell Factories, 2013, 12, 74.	1.9	20

Erwin Lamping

#	Article	IF	CITATIONS
19	FK506 Resistance of <i>Saccharomyces cerevisiae</i> Pdr5 and <i>Candida albicans</i> Cdr1 Involves Mutations in the Transmembrane Domains and Extracellular Loops. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	20
20	Identification and characterization of <i>Candida utilis</i> multidrug efflux transporter <i>Cu</i> Cdr1p. FEMS Yeast Research, 2016, 16, fow042.	1.1	15
21	Yeast Species in the Oral Cavities of Older People: A Comparison between People Living in Their Own Homes and Those in Rest Homes. Journal of Fungi (Basel, Switzerland), 2019, 5, 30.	1.5	15
22	Characterization of the Saccharomyces cerevisiae sec6-41 mutation and tools to create S. cerevisiae strains containing the sec6-4 allele. Gene, 2005, 361, 57-66.	1.0	14
23	Drug Resistance Is Conferred on the Model Yeast <i>Saccharomyces cerevisiae</i> by Expression of Full-Length Melanoma-Associated Human ATP-Binding Cassette Transporter ABCB5. Molecular Pharmaceutics, 2014, 11, 3452-3462.	2.3	14
24	Synthetic Organotellurium Compounds Sensitize Drug-Resistant Candida albicans Clinical Isolates to Fluconazole. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	14
25	Repression of the L-asparaginase gene during nodule development in Lupinus angustifolius. Plant Molecular Biology, 1994, 26, 303-311.	2.0	12
26	Role of Ectopic Gene Conversion in the Evolution of a Candida krusei Pleiotropic Drug Resistance Transporter Family. Genetics, 2017, 205, 1619-1639.	1.2	12
27	Identification and functional characterization ofPenicillium marneffeipleiotropic drug resistance transportersABC1andABC2. Medical Mycology, 2016, 54, 478-491.	0.3	11
28	A 23 bp cyp51A Promoter Deletion Associated With Voriconazole Resistance in Clinical and Environmental Isolates of Neocosmospora keratoplastica. Frontiers in Microbiology, 2020, 11, 272.	1.5	11
29	PDR Transporter ABC1 Is Involved in the Innate Azole Resistance of the Human Fungal Pathogen Fusarium keratoplasticum. Frontiers in Microbiology, 2021, 12, 673206.	1.5	7
30	Engineering a Cysteine-Deficient Functional Candida albicans Cdr1 Molecule Reveals a Conserved Region at the Cytosolic Apex of ABCG Transporters Important for Correct Folding and Trafficking of Cdr1. MSphere, 2021, 6, .	1.3	6
31	Inhibitor Resistant Mutants Give Important Insights into Candida albicans ABC Transporter Cdr1 Substrate Specificity and Help Elucidate Efflux Pump Inhibition. Antimicrobial Agents and Chemotherapy, 2021, , AAC0174821.	1.4	6
32	Small-Scale Plasma Membrane Preparation for the Analysis of Candida albicans Cdr1-mGFPHis. Journal of Visualized Experiments, 2021, , .	0.2	5
33	Use of a Yeast-Based Membrane Protein Expression Technology to Overexpress Drug Resistance Efflux Pumps. Methods in Molecular Biology, 2010, 666, 219-250.	0.4	4
34	Amino Acid Residues Affecting Drug Pump Function in Candida albicans-C. albicans Drug Pump Function Medical Mycology Journal, 2006, 47, 275-281.	0.9	3
35	Structure–Function Analyses of Multidrug Transporters. , 2017, , 379-406.		3
36	CANDIDA SPECIES AND STRAINS IN THE ORAL CAVITIES OF THE ELDERLY: A COMPARISON BETWEEN PEOPLE IN HOME-BASED CARE AND IN AGED-CARE FACILITIES. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2019, 128, e69.	0.2	0