
Ergang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4761558/publications.pdf Version: 2024-02-01

FRCANC WANC

#	Article	IF	CITATIONS
1	Allâ€polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives. Aggregate, 2022, 3, e58.	9.9	85
2	Low-bandgap nonfullerene acceptor based on thieno[3,2-b]indole core for highly efficient binary and ternary organic solar cells. Chemical Engineering Journal, 2022, 427, 131674.	12.7	27
3	Over 18% ternary polymer solar cells enabled by a terpolymer as the third component. Nano Energy, 2022, 92, 106681.	16.0	97
4	Polymer Acceptors with Flexible Spacers Afford Efficient and Mechanically Robust Allâ€Polymer Solar Cells. Advanced Materials, 2022, 34, e2107361.	21.0	89
5	Alkylâ€Amino Functionalized Reducedâ€Grapheneâ€Oxide–heptadecanâ€9â€amineâ€Based Spinâ€Coated Microsupercapacitors for On hip Low Power Electronics. Physica Status Solidi (B): Basic Research, 2022, 259, 2100304.	1.5	2
6	Highâ€Throughput Screening of Bladeâ€Coated Polymer:Polymer Solar Cells: Solvent Determines Achievable Performance. ChemSusChem, 2022, 15, .	6.8	9
7	A porphyrin pentamer as a bright emitter for NIR OLEDs. Journal of Materials Chemistry C, 2022, 10, 5929-5933.	5.5	6
8	Spin-Coated Heterogenous Stacked Electrodes for Performance Enhancement in CMOS-Compatible On-Chip Microsupercapacitors. ACS Applied Energy Materials, 2022, 5, 4221-4231.	5.1	2
9	Modulating the nanoscale morphology on carboxylate-pyrazine containing terpolymer toward 17.8% efficiency organic solar cells with enhanced thermal stability. Chemical Engineering Journal, 2022, 446, 137424.	12.7	14
10	Carboxylate substituted pyrazine: A simple and low-cost building block for novel wide bandgap polymer donor enables 15.3% efficiency in organic solar cells. Nano Energy, 2021, 82, 105679.	16.0	48
11	Nonfullerene acceptors from thieno[3,2-b]thiophene-fused naphthalene donor core with six-member-ring connection for efficient organic solar cells. Dyes and Pigments, 2021, 185, 108892.	3.7	14
12	Nearâ€Infrared Emission by Tuned Aggregation of a Porphyrin Compound in a Host–Guest Lightâ€Emitting Electrochemical Cell. Advanced Optical Materials, 2021, 9, 2001701.	7.3	11
13	Efficient wide-bandgap copolymer donors with reduced synthesis cost. Journal of Materials Chemistry C, 2021, 9, 16187-16191.	5.5	4
14	Synthesis and Electronic Properties of Diketopyrrolopyrrole-Based Polymers with and without Ring-Fusion. Macromolecules, 2021, 54, 970-980.	4.8	23
15	Nonconjugated Terpolymer Acceptors with Two Different Fused-Ring Electron-Deficient Building Blocks for Efficient All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 6442-6449.	8.0	28
16	Twisted Alkylthiothienâ€2â€yl Flanks and Extended Conjugation Length Synergistically Enhanced Photovoltaic Performance by Boosting Dielectric Constant and Carriers Kinetic Characteristics. Macromolecular Chemistry and Physics, 2021, 222, 2100030.	2.2	5
17	High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor. Science China Chemistry, 2021, 64, 1380-1388.	8.2	51
18	13.4 % Efficiency from All‣mallâ€Molecule Organic Solar Cells Based on a Crystalline Donor with Chlorine and Trialkylsilyl Substitutions. ChemSusChem, 2021, 14, 3535-3543.	6.8	15

#	Article	IF	CITATIONS
19	Using Two Compatible Donor Polymers Boosts the Efficiency of Ternary Organic Solar Cells to 17.7%. Chemistry of Materials, 2021, 33, 7254-7262.	6.7	35
20	Effect of fluorine atoms on optoelectronic, aggregation and dielectric constants of 2,1,3-benzothiadiazole-based alternating conjugated polymers. Dyes and Pigments, 2021, 193, 109486.	3.7	18
21	Polymer acceptors based on Y6 derivatives for all-polymer solar cells. Science Bulletin, 2021, 66, 1950-1953.	9.0	42
22	17.25% high efficiency ternary solar cells with increased open-circuit voltage using a high HOMO level small molecule guest donor in a PM6:Y6 blend. Journal of Materials Chemistry A, 2021, 9, 20493-20501.	10.3	24
23	Improved charge storage performance of a layered Mo _{1.33} C MXene/MoS ₂ /graphene nanocomposite. Nanoscale Advances, 2021, 3, 6689-6695.	4.6	2
24	Low-bandgap polymers with quinoid unit as π bridge for high-performance solar cells. Journal of Energy Chemistry, 2020, 40, 180-187.	12.9	6
25	Expanded Multiband Super-Nyquist CAP Modulation for Highly Bandlimited Organic Visible Light Communications. IEEE Systems Journal, 2020, 14, 2544-2550.	4.6	7
26	Comparative study on the effects of alkylsilyl and alkylthio side chains on the performance of fullerene and non-fullerene polymer solar cells. Organic Electronics, 2020, 77, 105572.	2.6	6
27	Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation. Energy and Environmental Science, 2020, 13, 5017-5027.	30.8	170
28	A Non onjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells. Angewandte Chemie, 2020, 132, 20007-20012.	2.0	16
29	A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 19835-19840.	13.8	105
30	Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. ACS Energy Letters, 2020, 5, 2711-2720.	17.4	188
31	Simultaneously enhancing the dielectric constant, photo-response and deepening HOMO levels of benzo[1,2-b;4,5-b']dithiophene derivatives-based conjugated polymers. Dyes and Pigments, 2020, 177, 108263.	3.7	5
32	Low-gap zinc porphyrin as an efficient dopant for photomultiplication type photodetectors. Chemical Communications, 2020, 56, 12769-12772.	4.1	11
33	Lateral size reduction of graphene oxide preserving its electronic properties and chemical functionality. RSC Advances, 2020, 10, 29432-29440.	3.6	9
34	Highly Stable Indacenodithieno[3,2- <i>b</i>]thiophene-Based Donor–Acceptor Copolymers for Hybrid Electrochromic and Energy Storage Applications. Macromolecules, 2020, 53, 11106-11119.	4.8	31
35	Axisymmetric and Asymmetric Naphthalene-Bisthienothiophene Based Nonfullerene Acceptors: On Constitutional Isomerization and Photovoltaic Performance. ACS Applied Energy Materials, 2020, 3, 5734-5744.	5.1	14
36	The role of connectivity in significant bandgap narrowing for fused-pyrene based non-fullerene acceptors toward high-efficiency organic solar cells. Journal of Materials Chemistry A, 2020, 8, 5995-6003.	10.3	11

#	Article	IF	CITATIONS
37	Mechanically Robust All-Polymer Solar Cells from Narrow Band Gap Acceptors with Hetero-Bridging Atoms. Joule, 2020, 4, 658-672.	24.0	279
38	Weak Makes It Powerful: The Role of Cognate Small Molecules as an Alloy Donor in 2D/1A Ternary Fullerene Solar Cells for Finely Tuned Hierarchical Morphology in Thick Active Layers. Small Methods, 2020, 4, 1900766.	8.6	19
39	Reduced Nonradiative Voltage Loss in Terpolymer Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 3796-3802.	4.6	6
40	10.13% Efficiency Allâ€Polymer Solar Cells Enabled by Improving the Optical Absorption of Polymer Acceptors. Solar Rrl, 2020, 4, 2000142.	5.8	45
41	Editorial: Polymer Solar Cells: Molecular Design and Microstructure Control. Frontiers in Chemistry, 2020, 8, 697.	3.6	1
42	Revealing the Position Effect of an Alkylthio Side Chain in Phenyl-Substituted Benzodithiophene-Based Donor Polymers on the Photovoltaic Performance of Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 33173-33178.	8.0	65
43	Electrochemical Evaluation of a Napthalene Diimide Derivative for Potential Application in Aqueous Organic Redox Flow Batteries. Energy Technology, 2019, 7, 1900843.	3.8	25
44	Experimental Demonstration of Staggered CAP Modulation for Low Bandwidth Red-Emitting Polymer-LED Based Visible Light Communications. , 2019, , .		5
45	Fluorinated Photovoltaic Materials for Highâ€Performance Organic Solar Cells. Chemistry - an Asian Journal, 2019, 14, 3085-3095.	3.3	66
46	Structural engineering of pyrrolo[3,4-f]benzotriazole-5,7(2H,6H)-dione-based polymers for non-fullerene organic solar cells with an efficiency over 12%. Journal of Materials Chemistry A, 2019, 7, 19522-19530.	10.3	10
47	Ladder-type high gap conjugated polymers based on indacenodithieno[3,2-b]thiophene and bithiazole for organic photovoltaics. Organic Electronics, 2019, 74, 211-217.	2.6	8
48	Star-Shaped Diketopyrrolopyrrole–Zinc Porphyrin that Delivers 900 nm Emission in Light-Emitting Electrochemical Cells. Chemistry of Materials, 2019, 31, 9721-9728.	6.7	34
49	Impact of P3HT materials properties and layer architecture on OPV device stability. Solar Energy Materials and Solar Cells, 2019, 202, 110151.	6.2	17
50	Conjugated Donor–Acceptor Terpolymers Toward Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2019, 31, e1807019.	21.0	120
51	Influence of backbone modification of difluoroquinoxaline-based copolymers on the interchain packing, blend morphology and photovoltaic properties of nonfullerene organic solar cells. Journal of Materials Chemistry C, 2019, 7, 1681-1689.	5.5	25
52	On the Design of Host–Guest Lightâ€Emitting Electrochemical Cells: Should the Guest be Physically Blended or Chemically Incorporated into the Host for Efficient Emission?. Advanced Optical Materials, 2019, 7, 1900451.	7.3	19
53	Conjugated Polymers: Conjugated Donor–Acceptor Terpolymers Toward Highâ€Efficiency Polymer Solar Cells (Adv. Mater. 22/2019). Advanced Materials, 2019, 31, 1970161.	21.0	5
54	Dimerization of 9,10-anthraquinone-2,7-Disulfonic acid (AQDS). Electrochimica Acta, 2019, 317, 478-485.	5.2	40

#	Article	IF	CITATIONS
55	Probing the Relationship between Molecular Structures, Thermal Transitions, and Morphology in Polymer Semiconductors Using a Woven Glass-Mesh-Based DMTA Technique. Chemistry of Materials, 2019, 31, 6740-6749.	6.7	32
56	Combining Benzotriazole and Benzodithiophene Host Units in Host–Guest Polymers for Efficient and Stable Nearâ€Infrared Emission from Lightâ€Emitting Electrochemical Cells. Advanced Optical Materials, 2019, 7, 1900280.	7.3	23
57	Broad spectrum absorption and low-voltage electrochromic operation from indacenodithieno[3,2- <i>b</i>]thiophene-based copolymers. Polymer Chemistry, 2019, 10, 2004-2014.	3.9	15
58	Orange to green switching anthraquinoneâ€based electrochromic material. Journal of Applied Polymer Science, 2019, 136, 47729.	2.6	3
59	Enhanced efficiency of polymer solar cells by improving molecular aggregation and broadening the absorption spectra. Dyes and Pigments, 2019, 166, 42-48.	3.7	39
60	Recent Advances in nâ€Type Polymers for Allâ€Polymer Solar Cells. Advanced Materials, 2019, 31, e1807275.	21.0	196
61	Diketopyrrolopyrrole-based terpolymers with tunable broad band absorption for fullerene and fullerene-free polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 3375-3384.	5.5	14
62	Functionalized reduced graphene oxide with tunable band gap and good solubility in organic solvents. Carbon, 2019, 146, 491-502.	10.3	58
63	Hybrid Super-Nyquist CAP Modulation based VLC with Low Bandwidth Polymer LEDs. , 2019, , .		3
64	Incorporation of Designed Donor–Acceptor–Donor Segments in a Host Polymer for Strong Near-Infrared Emission from a Large-Area Light-Emitting Electrochemical Cell. ACS Applied Energy Materials, 2018, 1, 1753-1761.	5.1	23
65	Energy-effectively printed all-polymer solar cells exceeding 8.61% efficiency. Nano Energy, 2018, 46, 428-435.	16.0	45
66	Synthesis and Characterization of Isoindigoâ€Based Polymers with Thermocleavable Side Chains. Macromolecular Chemistry and Physics, 2018, 219, 1700538.	2.2	3
67	High-performance all-polymer solar cells based on fluorinated naphthalene diimide acceptor polymers with fine-tuned crystallinity and enhanced dielectric constants. Nano Energy, 2018, 45, 368-379.	16.0	101
68	High Seebeck Coefficient and Power Factor in nâ€īype Organic Thermoelectrics. Advanced Electronic Materials, 2018, 4, 1700501.	5.1	64
69	Alcohol-Soluble Conjugated Polymers as Cathode Interlayers for All-Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 2176-2182.	5.1	23
70	High Performance All-Polymer Photodetector Comprising a Donor–Acceptor–Acceptor Structured Indacenodithiophene–Bithieno[3,4- <i>c</i>]Pyrroletetrone Copolymer. ACS Macro Letters, 2018, 7, 395-400.	4.8	43
71	High-Performance Organic Photodetectors from a High-Bandgap Indacenodithiophene-Based π-Conjugated Donor–Acceptor Polymer. ACS Applied Materials & Interfaces, 2018, 10, 12937-12946.	8.0	42
72	8.0% Efficient Allâ€Polymer Solar Cells with High Photovoltage of 1.1 V and Internal Quantum Efficiency near Unity. Advanced Energy Materials, 2018, 8, 1700908.	19.5	81

#	Article	IF	CITATIONS
73	Improving Performance of Allâ€Polymer Solar Cells Through Backbone Engineering of Both Donors and Acceptors. Solar Rrl, 2018, 2, 1800247.	5.8	17
74	Open-Circuit Voltage Modulations on All-Polymer Solar Cells by Side Chain Engineering on 4,8-Di(thiophen-2-yl)benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene-Based Donor Polymers. ACS Applied Energy Materials, 2018, 1, 2918-2926.	5.1	10
75	Correlation of Molecular Structure and Charge Transport Properties: A Case Study in Naphthalenediimide–Based Copolymer Semiconductors. Advanced Electronic Materials, 2018, 4, 1800203.	5.1	6
76	Efficient Nearâ€Infrared Electroluminescence at 840 nm with "Metalâ€Free―Smallâ€Molecule:Polymer Blends. Advanced Materials, 2018, 30, e1706584.	21.0	49
77	The Effect of Concentration on Electron Transfer Kinetics for 9,10-Anthraquinone-2,7-Disulfonic Acid (AQDS) Its Impact on Aqueous Redox Flow Battery Performance. ECS Meeting Abstracts, 2018, , .	0.0	0
78	Defining donor and acceptor strength in conjugated copolymers. Molecular Physics, 2017, 115, 485-496.	1.7	14
79	Study of ITO-free roll-to-roll compatible polymer solar cells using the one-step doctor blading technique. Journal of Materials Chemistry A, 2017, 5, 4093-4102.	10.3	36
80	Ternary organic solar cells with enhanced open circuit voltage. Nano Energy, 2017, 37, 24-31.	16.0	96
81	Polymer solar cells spray coated with non-halogenated solvents. Solar Energy Materials and Solar Cells, 2017, 161, 52-61.	6.2	27
82	High-photovoltage all-polymer solar cells based on a diketopyrrolopyrrole–isoindigo acceptor polymer. Journal of Materials Chemistry A, 2017, 5, 11693-11700.	10.3	54
83	High-performance ternary polymer solar cells from a structurally similar polymer alloy. Journal of Materials Chemistry A, 2017, 5, 12400-12406.	10.3	37
84	A comparative study of the photovoltaic performances of terpolymers and ternary systems. RSC Advances, 2017, 7, 17959-17967.	3.6	12
85	Generation of Photoexcitations and Trap-Assisted Recombination in TQ1:PC ₇₁ BM Blends. Journal of Physical Chemistry C, 2017, 121, 8211-8219.	3.1	6
86	Molecular Doping and Trap Filling in Organic Semiconductor Host–Guest Systems. Journal of Physical Chemistry C, 2017, 121, 7767-7775.	3.1	73
87	Highâ€Performance and Stable Allâ€Polymer Solar Cells Using Donor and Acceptor Polymers with Complementary Absorption. Advanced Energy Materials, 2017, 7, 1602722.	19.5	90
88	Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope. Ultramicroscopy, 2017, 176, 23-30.	1.9	4
89	Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope. Ultramicroscopy, 2017, 173, 16-23.	1.9	0
90	Highly Ordered Organic Ferroelectric DIPAB-Patterned Thin Films. Langmuir, 2017, 33, 12859-12864.	3.5	13

#	Article	IF	CITATIONS
91	Intense and Stable Near-Infrared Emission from Light-Emitting Electrochemical Cells Comprising a Metal-Free Indacenodithieno[3,2- <i>b</i>]thiophene-Based Copolymer as the Single Emitter. Chemistry of Materials, 2017, 29, 7750-7759.	6.7	49
92	The trade-off between electrochromic stability and contrast of a thiophene—Quinoxaline copolymer. Electrochimica Acta, 2017, 253, 530-535.	5.2	21
93	9.0% power conversion efficiency from ternary all-polymer solar cells. Energy and Environmental Science, 2017, 10, 2212-2221.	30.8	200
94	Ternary Organic Solar Cells with Minimum Voltage Losses. Advanced Energy Materials, 2017, 7, 1700390.	19.5	55
95	Synthesis and characterization of benzodithiophene and benzotriazole-based polymers for photovoltaic applications. Beilstein Journal of Organic Chemistry, 2016, 12, 1629-1637.	2.2	18
96	Photo-degradation in air of the active layer components in a thiophene–quinoxaline copolymer:fullerene solar cell. Physical Chemistry Chemical Physics, 2016, 18, 11132-11138.	2.8	20
97	Triazolobenzothiadiazoleâ€Based Copolymers for Polymer Lightâ€Emitting Diodes: Pure Nearâ€Infrared Emission via Optimized Energy and Charge Transfer. Advanced Optical Materials, 2016, 4, 2068-2076.	7.3	48
98	Ultrahigh Surfaceâ€Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap. Advanced Optical Materials, 2016, 4, 2021-2027.	7.3	38
99	High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing. Journal of the American Chemical Society, 2016, 138, 10935-10944.	13.7	401
100	Organic Photovoltaics: Low Band Gap Polymer Solar Cells With Minimal Voltage Losses (Adv. Energy) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
101	Solar Cells: High Bandgap (1.9 eV) Polymer with Over 8% Efficiency in Bulk Heterojunction Solar Cells (Adv. Electron. Mater. 7/2016). Advanced Electronic Materials, 2016, 2, .	5.1	0
102	Low Band Gap Polymer Solar Cells With Minimal Voltage Losses. Advanced Energy Materials, 2016, 6, 1600148.	19.5	84
103	Highâ€Performance Hole Transport and Quasiâ€Balanced Ambipolar OFETs Based on D–A–A Thienoâ€benzoâ€isoindigo Polymers. Advanced Electronic Materials, 2016, 2, 1500313.	5.1	32
104	Substrate-dependent resistance decrease of graphene by ultraviolet-ozone charge doping. RSC Advances, 2016, 6, 62091-62098.	3.6	4
105	High Bandgap (1.9 eV) Polymer with Over 8% Efficiency in Bulk Heterojunction Solar Cells. Advanced Electronic Materials, 2016, 2, 1600084.	5.1	36
106	Inverted all-polymer solar cells based on a quinoxaline–thiophene/naphthalene-diimide polymer blend improved by annealing. Journal of Materials Chemistry A, 2016, 4, 3835-3843.	10.3	57
107	Open circuit voltage and efficiency in ternary organic photovoltaic blends. Energy and Environmental Science, 2016, 9, 257-266.	30.8	85

108Regular Energetics at Conjugated Electrolyte/Electrode Modifier for Organic Electronics and their
Implications on Design Rules. Advanced Materials Interfaces, 2015, 2, 1500204.3.734

#	Article	IF	CITATIONS
109	Nearâ€Infrared Emitting and Proâ€Angiogenic Electrospun Conjugated Polymer Scaffold for Optical Biomaterial Tracking. Advanced Functional Materials, 2015, 25, 4274-4281.	14.9	19
110	D–A ₁ –D–A ₂ Copolymers with Extended Donor Segments for Efficient Polymer Solar Cells. Macromolecules, 2015, 48, 1009-1016.	4.8	82
111	Vertical and lateral morphology effects on solar cell performance for a thiophene–quinoxaline copolymer:PC ₇₀ BM blend. Journal of Materials Chemistry A, 2015, 3, 6970-6979.	10.3	46
112	Pore-free bubbling delamination of chemical vapor deposited graphene from copper foils. Journal of Materials Chemistry C, 2015, 3, 8634-8641.	5.5	29
113	A dual ternary system for highly efficient ITO-free inverted polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 18365-18371.	10.3	23
114	Predicting thermal stability of organic solar cells through an easy and fast capacitance measurement. Solar Energy Materials and Solar Cells, 2015, 141, 240-247.	6.2	42
115	Mapping fullerene crystallization in a photovoltaic blend: an electron tomography study. Nanoscale, 2015, 7, 8451-8456.	5.6	14
116	Pyrrolo[3,4-g]quinoxaline-6,8-dione-based conjugated copolymers for bulk heterojunction solar cells with high photovoltages. Polymer Chemistry, 2015, 6, 4624-4633.	3.9	24
117	Temperature-Dependent Optical Properties of Flexible Donor–Acceptor Polymers. Journal of Physical Chemistry C, 2015, 119, 6453-6463.	3.1	17
118	Rational design of D–A ₁ –D–A ₂ conjugated polymers with superior spectral coverage. Physical Chemistry Chemical Physics, 2015, 17, 26677-26689.	2.8	12
119	One-Step Synthesis of Precursor Oligomers for Organic Photovoltaics: A Comparative Study between Polymers and Small Molecules. ACS Applied Materials & Interfaces, 2015, 7, 27106-27114.	8.0	25
120	Improved performance and life time of inverted organic photovoltaics by using polymer interfacial materials. Solar Energy Materials and Solar Cells, 2015, 133, 99-104.	6.2	10
121	From spin coating to doctor blading: A systematic study on the photovoltaic performance of an isoindigo-based polymer. Solar Energy Materials and Solar Cells, 2015, 132, 252-259.	6.2	41
122	Optoelectronic Devices: Lowâ€Temperature Combustionâ€Synthesized Nickel Oxide Thin Films as Holeâ€Transport Interlayers for Solutionâ€Processed Optoelectronic Devices (Adv. Energy Mater. 6/2014). Advanced Energy Materials, 2014, 4, .	19.5	0
123	Nanostructures: Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends (Adv. Energy Mater. 9/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	19.5	0
124	On the complex refractive index of polymer:fullerene photovoltaic blends. Thin Solid Films, 2014, 571, 371-376.	1.8	23
125	Facile Monitoring of Fullerene Crystallization in Polymer Solar Cell Blends by UV–vis Spectroscopy. Macromolecular Chemistry and Physics, 2014, 215, 530-535.	2.2	16
126	Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends. Advanced Energy Materials, 2014, 4, 1301437.	19.5	65

#	Article	IF	CITATIONS
127	Charge Carrier Dynamics of Polymer:Fullerene Blends: From Geminate to Nonâ€Geminate Recombination. Advanced Energy Materials, 2014, 4, 1301706.	19.5	17
128	Lowâ€Temperature Combustionâ€Synthesized Nickel Oxide Thin Films as Holeâ€Transport Interlayers for Solutionâ€Processed Optoelectronic Devices. Advanced Energy Materials, 2014, 4, 1301460.	19.5	110
129	Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells. Energy and Environmental Science, 2014, 7, 361-369.	30.8	108
130	Conjugated polymers based on benzodithiophene and fluorinated quinoxaline for bulk heterojunction solar cells: thiophene versus thieno[3,2-b]thiophene as π-conjugated spacers. Polymer Chemistry, 2014, 5, 2083.	3.9	68
131	Fullerene mixtures enhance the thermal stability of a non-crystalline polymer solar cell blend. Applied Physics Letters, 2014, 104, .	3.3	47
132	Structural tuning of quinoxaline-benzodithiophene copolymers via alkyl side chain manipulation: synthesis, characterization and photovoltaic properties. Journal of Materials Chemistry A, 2014, 2, 11162-11170.	10.3	37
133	Sub-glass transition annealing enhances polymer solar cell performance. Journal of Materials Chemistry A, 2014, 2, 6146-6152.	10.3	48
134	A Facile Method to Enhance Photovoltaic Performance of Benzodithiopheneâ€ksoindigo Polymers by Inserting Bithiophene Spacer. Advanced Energy Materials, 2014, 4, 1301455.	19.5	66
135	Stability study of quinoxaline and pyrido pyrazine based co-polymers for solar cell applications. Solar Energy Materials and Solar Cells, 2014, 130, 138-143.	6.2	24
136	Manipulating backbone structure with various conjugated spacers to enhance photovoltaic performance of D–A-type two-dimensional copolymers. Organic Electronics, 2014, 15, 2876-2884.	2.6	40
137	Effects of side chain isomerism on the physical and photovoltaic properties of indacenodithieno[3,2- <i>b</i>]thiophene–quinoxaline copolymers: toward a side chain design for enhanced photovoltaic performance. Journal of Materials Chemistry A, 2014, 2, 18988-18997.	10.3	45
138	Light-harvesting capabilities of low band gap donor–acceptor polymers. Physical Chemistry Chemical Physics, 2014, 16, 24853-24865.	2.8	28
139	25th Anniversary Article: Isoindigoâ€Based Polymers and Small Molecules for Bulk Heterojunction Solar Cells and Field Effect Transistors. Advanced Materials, 2014, 26, 1801-1826.	21.0	330
140	Enhanced Photovoltaic Performance of Indacenodithiopheneâ€Quinoxaline Copolymers by Sideâ€Chain Modulation. Advanced Energy Materials, 2014, 4, 1400680.	19.5	134
141	Electron Microscopy of Organic Solar Cells Thermally Stabilized with Fullerene Nucleating Agents. Microscopy and Microanalysis, 2014, 20, 398-399.	0.4	0
142	Real-time Path Planning Strategy for UAV Based on Improved Particle Swarm Optimization. Journal of Computers, 2014, 9, .	0.4	13
143	Computational Modeling of Isoindigo-Based Polymers Used in Organic Solar Cells. Journal of Physical Chemistry C, 2013, 117, 17940-17954.	3.1	27
144	An alternating D–A1–D–A2 copolymer containing two electron-deficient moieties for efficient polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 11141.	10.3	66

#	Article	IF	CITATIONS
145	Influence of Incorporating Different Electron-Rich Thiophene-Based Units on the Photovoltaic Properties of Isoindigo-Based Conjugated Polymers: An Experimental and DFT Study. Macromolecules, 2013, 46, 8488-8499.	4.8	58
146	2D ï€-conjugated benzo[1,2-b:4,5-bâ€2]dithiophene- and quinoxaline-based copolymers for photovoltaic applications. RSC Advances, 2013, 3, 24543.	3.6	34
147	Fluorine substitution enhanced photovoltaic performance of a D–A1–D–A2 copolymer. Chemical Communications, 2013, 49, 9335.	4.1	116
148	Tracing charge transfer states in polymer:fullerene bulk-heterojunctions. Journal of Materials Chemistry A, 2013, 1, 7321.	10.3	11
149	Conformational Disorder Enhances Solubility and Photovoltaic Performance of a Thiophene–Quinoxaline Copolymer. Advanced Energy Materials, 2013, 3, 806-814.	19.5	86
150	Nucleation-limited fullerene crystallisation in a polymer–fullerene bulk-heterojunction blend. Journal of Materials Chemistry A, 2013, 1, 7174.	10.3	60
151	Molecular orbital energy level modulation through incorporation of selenium and fluorine into conjugated polymers for organic photovoltaic cells. Journal of Materials Chemistry A, 2013, 1, 13422.	10.3	31
152	Pyramid shape of polymer solar cells: a simple solution to triple efficiency. Journal Physics D: Applied Physics, 2013, 46, 305101.	2.8	4
153	Synthesis and characterization of benzodithiophene–isoindigo polymers for solar cells. Journal of Materials Chemistry, 2012, 22, 2306-2314.	6.7	156
154	Ultrafast Terahertz Photoconductivity of Bulk Heterojunction Materials Reveals High Carrier Mobility up to Nanosecond Time Scale. Journal of the American Chemical Society, 2012, 134, 11836-11839.	13.7	64
155	Influences of Surface Roughness of ZnO Electron Transport Layer on the Photovoltaic Performance of Organic Inverted Solar Cells. Journal of Physical Chemistry C, 2012, 116, 24462-24468.	3.1	126
156	Electron and Hole Contributions to the Terahertz Photoconductivity of a Conjugated Polymer:Fullerene Blend Identified. Journal of Physical Chemistry Letters, 2012, 3, 2442-2446.	4.6	32
157	Quantification of Quantum Efficiency and Energy Losses in Low Bandgap Polymer:Fullerene Solar Cells with High Open ircuit Voltage. Advanced Functional Materials, 2012, 22, 3480-3490.	14.9	190
158	Semiâ€īransparent Tandem Organic Solar Cells with 90% Internal Quantum Efficiency. Advanced Energy Materials, 2012, 2, 1467-1476.	19.5	109
159	Study of Conjugated Polymer as Electron-acceptor in Organic Photovoltaic Solar Cells. Chinese Journal of Luminescence, 2012, 33, 322-327.	0.5	0
160	Solvent Effect Leading to High Performance of Bulk Heterojunction Polymer Solar Cells by Novel Polysilafluorene Derivatives. Journal of Physical Chemistry C, 2011, 115, 2314-2319.	3.1	18
161	An Easily Accessible Isoindigo-Based Polymer for High-Performance Polymer Solar Cells. Journal of the American Chemical Society, 2011, 133, 14244-14247.	13.7	363
162	Synthesis of Quinoxaline-Based Donorâ^'Acceptor Narrow-Band-Gap Polymers and Their Cyclized Derivatives for Bulk-Heterojunction Polymer Solar Cell Applications. Macromolecules, 2011, 44, 894-901.	4.8	127

#	Article	IF	CITATIONS
163	Side-Chain Architectures of 2,7-Carbazole and Quinoxaline-Based Polymers for Efficient Polymer Solar Cells. Macromolecules, 2011, 44, 2067-2073.	4.8	119
164	An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. Chemical Communications, 2011, 47, 4908.	4.1	134
165	Lateral Phase Separation Gradients in Spin oated Thin Films of Highâ€Performance Polymer:Fullerene Photovoltaic Blends. Advanced Functional Materials, 2011, 21, 3169-3175.	14.9	49
166	Efficient infiltration of low molecular weight polymer in nanoporous TiO2. Chemical Physics Letters, 2011, 502, 225-230.	2.6	10
167	Blue-to-transmissive electrochromic switching of solution processable donor–acceptor polymers. Organic Electronics, 2011, 12, 1406-1413.	2.6	40
168	Enhance performance of organic solar cells based on an isoindigo-based copolymer by balancing absorption and miscibility of electron acceptor. Applied Physics Letters, 2011, 99, 143302.	3.3	45
169	Mixed solvents for reproducible photovoltaic bulk heterojunctions. Journal of Photonics for Energy, 2011, 1, 011122.	1.3	9
170	Low bandgap polymers synthesized by FeCl3 oxidative polymerization. Solar Energy Materials and Solar Cells, 2010, 94, 1275-1281.	6.2	56
171	Influence of Molecular Weight on the Performance of Organic Solar Cells Based on a Fluorene Derivative. Advanced Functional Materials, 2010, 20, 2124-2131.	14.9	124
172	An Easily Synthesized Blue Polymer for Highâ€Performance Polymer Solar Cells. Advanced Materials, 2010, 22, 5240-5244.	21.0	435
173	Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure. Journal of Physical Chemistry C, 2010, 114, 6849-6853.	3.1	198
174	Small Band Gap Polymers Synthesized via a Modified Nitration of 4,7-Dibromo-2,1,3-benzothiadiazole. Organic Letters, 2010, 12, 4470-4473.	4.6	79
175	Environmentâ€friendly synthesis of long chain semiaromatic polyamides with high heat resistance. Journal of Applied Polymer Science, 2009, 114, 2036-2042.	2.6	50
176	Donor Polymers Containing Benzothiadiazole and Four Thiophene Rings in Their Repeating Units with Improved Photovoltaic Performance. Macromolecules, 2009, 42, 4410-4415.	4.8	150
177	Development of Si-bridged conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Proceedings of SPIE, 2008, , .	0.8	4
178	High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Applied Physics Letters, 2008, 92, 033307.	3.3	446
179	High-efficiency red and green light-emitting polymers based on a novel wide bandgap poly(2,7-silafluorene). Journal of Materials Chemistry, 2008, 18, 797.	6.7	86
180	Flexible Carbon Nanotubeâ^'Polymer Composite Films with High Conductivity and Superhydrophobicity Made by Solution Process. Nano Letters, 2008, 8, 4454-4458.	9.1	154

#	Article	IF	CITATIONS
181	Highâ€efficiency blue lightâ€emitting polymers based on 3,6â€silafluorene and 2,7â€silafluorene. Journal of Polymer Science Part A, 2007, 45, 4941-4949.	2.3	45
182	Poly(3,6-silafluorene-co-2,7-fluorene)-based high-efficiency and color-pure blue light-emitting polymers with extremely narrow band-width and high spectral stability. Journal of Materials Chemistry, 2006, 16, 4133.	6.7	95
183	Donor-acceptor polymer complex formation in solution behind highly efficient all-polymer solar cells ?. , 0, , .		Ο