
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4761540/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biosynthetic response of cartilage explants to dynamic compression. Journal of Orthopaedic<br>Research, 1989, 7, 619-636.                                                                                               | 2.3  | 768       |
| 2  | Cartilage Tissue Remodeling in Response to Mechanical Forces. Annual Review of Biomedical Engineering, 2000, 2, 691-713.                                                                                                | 12.3 | 548       |
| 3  | Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. Journal of Orthopaedic Research, 1992, 10, 745-758.                                                                          | 2.3  | 473       |
| 4  | Mechanical and physicochemical determinants of the chondrocyte biosynthetic response. Journal of<br>Orthopaedic Research, 1988, 6, 777-792.                                                                             | 2.3  | 383       |
| 5  | Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nature Methods, 2015, 12, 1132-1134.                                                                          | 19.0 | 326       |
| 6  | Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. Journal of Orthopaedic Research, 2000, 18, 739-748.                                                                | 2.3  | 295       |
| 7  | Solid stress and elastic energy as measures of tumour mechanopathology. Nature Biomedical<br>Engineering, 2017, 1, .                                                                                                    | 22.5 | 280       |
| 8  | Cartilage diseases. Matrix Biology, 2018, 71-72, 51-69.                                                                                                                                                                 | 3.6  | 258       |
| 9  | Swelling of articular cartilage and other connective tissues: Electromechanochemical forces.<br>Journal of Orthopaedic Research, 1985, 3, 148-159.                                                                      | 2.3  | 230       |
| 10 | Mechanical Compression of Cartilage Explants Induces Multiple Time-dependent Gene Expression<br>Patterns and Involves Intracellular Calcium and Cyclic AMP. Journal of Biological Chemistry, 2004,<br>279, 19502-19511. | 3.4  | 212       |
| 11 | The effect of dynamic compression on the response of articular cartilage to insulinâ€like growth<br>factorâ€l. Journal of Orthopaedic Research, 2001, 19, 11-17.                                                        | 2.3  | 200       |
| 12 | Biosynthetic response and mechanical properties of articular cartilage after injurious compression.<br>Journal of Orthopaedic Research, 2001, 19, 1140-1146.                                                            | 2.3  | 193       |
| 13 | Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Science Translational Medicine, 2016, 8, 360ra135.                                                   | 12.4 | 184       |
| 14 | Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Science Translational Medicine, 2018, 10, .                                                              | 12.4 | 183       |
| 15 | Cartilage-targeting drug delivery: can electrostatic interactions help?. Nature Reviews Rheumatology, 2017, 13, 183-193.                                                                                                | 8.0  | 180       |
| 16 | Streaming potentials: A sensitive index of enzymatic degradation in articular cartilage. Journal of<br>Orthopaedic Research, 1987, 5, 497-508.                                                                          | 2.3  | 134       |
| 17 | Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nature Biomedical Engineering, 2019, 3, 230-245.                                                        | 22.5 | 127       |
| 18 | Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants. Journal of Orthopaedic Research, 1998, 16, 490-499.                                                   | 2.3  | 112       |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Down-regulation of chondrocyte aggrecan and type-II Collagen gene expression correlates with<br>increases in static compression magnitude and duration. Journal of Orthopaedic Research, 1999, 17,<br>836-842.                     | 2.3  | 112       |
| 20 | Mechanical Injury and Cytokines Cause Loss of Cartilage Integrity and Upregulate Proteins Associated<br>with Catabolism, Immunity, Inflammation, and Repair. Molecular and Cellular Proteomics, 2009, 8,<br>1475-1489.             | 3.8  | 90        |
| 21 | Effects of short-term glucocorticoid treatment on changes in cartilage matrix degradation and chondrocyte gene expression induced by mechanical injury and inflammatory cytokines. Arthritis Research and Therapy, 2011, 13, R142. | 3.5  | 83        |
| 22 | Size- and speed-dependent mechanical behavior in living mammalian cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9529-9534.                                                | 7.1  | 81        |
| 23 | Differential effects of serum, insulin-like growth factor-I, and fibroblast growth factor-2 on the maintenance of cartilage physical properties during long-term culture. Journal of Orthopaedic Research, 1996, 14, 44-52.        | 2.3  | 77        |
| 24 | Intraâ€articular dexamethasone to inhibit the development of postâ€traumatic osteoarthritis. Journal of<br>Orthopaedic Research, 2017, 35, 406-411.                                                                                | 2.3  | 65        |
| 25 | Aggrecan Nanoscale Solid–Fluid Interactions Are a Primary Determinant of Cartilage Dynamic<br>Mechanical Properties. ACS Nano, 2015, 9, 2614-2625.                                                                                 | 14.6 | 61        |
| 26 | Molecular-Level Theoretical Model for Electrostatic Interactions within Polyelectrolyte Brushes:Â<br>Applications to Charged Glycosaminoglycans. Langmuir, 2003, 19, 5526-5539.                                                    | 3.5  | 60        |
| 27 | Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: Application to tendon and skin biophysics. Acta Biomaterialia, 2018, 70, 249-259.                                      | 8.3  | 60        |
| 28 | Green fluorescent proteins engineered for cartilage-targeted drug delivery: Insights for transport into highly charged avascular tissues. Biomaterials, 2018, 183, 218-233.                                                        | 11.4 | 50        |
| 29 | Induction of DNA Synthesis by a Single Transient Mechanical Stimulus of Human Vascular Smooth<br>Muscle Cells. Circulation, 1996, 93, 99-105.                                                                                      | 1.6  | 48        |
| 30 | Cartilage degradation and associated changes in biomechanical and electromechanical properties.<br>Acta Orthopaedica, 1995, 66, 38-44.                                                                                             | 1.4  | 48        |
| 31 | Physical and Biological Regulation of Proteoglycan Turnover around Chondrocytes in Cartilage<br>Explants: Implications for Tissue Degradation and Repair. Annals of the New York Academy of Sciences,<br>1999, 878, 420-441.       | 3.8  | 47        |
| 32 | Predicting Knee Osteoarthritis. Annals of Biomedical Engineering, 2016, 44, 222-233.                                                                                                                                               | 2.5  | 47        |
| 33 | Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency<br>AFM-based rheology. Journal of Biomechanics, 2017, 54, 11-18.                                                                       | 2.1  | 46        |
| 34 | A novel mechanobiological model can predict how physiologically relevant dynamic loading causes proteoglycan loss in mechanically injured articular cartilage. Scientific Reports, 2018, 8, 15599.                                 | 3.3  | 46        |
| 35 | A comparative study of the inhibitory effects of interleukin-1 receptor antagonist following administration as a recombinant protein or by gene transfer. Arthritis Research, 2003, 5, R301.                                       | 2.0  | 43        |
| 36 | Effects of Dexamethasone on Mesenchymal Stromal Cell Chondrogenesis and Aggrecanase Activity.<br>Cartilage, 2013, 4, 63-74.                                                                                                        | 2.7  | 43        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Nanomechanical phenotype of chondroadherin-null murine articular cartilage. Matrix Biology, 2014,<br>38, 84-90.                                                                                                                                  | 3.6 | 42        |
| 38 | AFM-Nanomechanical Test: An Interdisciplinary Tool That Links the Understanding of Cartilage and<br>Meniscus Biomechanics, Osteoarthritis Degeneration, and Tissue Engineering. ACS Biomaterials<br>Science and Engineering, 2017, 3, 2033-2049. | 5.2 | 42        |
| 39 | Electromechanical Transduction with Charged Polyelectrolyte Membranes. IEEE Transactions on Biomedical Engineering, 1976, BME-23, 421-433.                                                                                                       | 4.2 | 40        |
| 40 | Contribution of electrodiffusion to the dynamics of electrically stimulated changes in mechanical properties of collagen membranes. Biopolymers, 1980, 19, 241-262.                                                                              | 2.4 | 40        |
| 41 | High-bandwidth AFM-based rheology is a sensitive indicator of early cartilage aggrecan degradation relevant to mouse models of osteoarthritis. Journal of Biomechanics, 2015, 48, 162-165.                                                       | 2.1 | 40        |
| 42 | Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds. Scientific Reports, 2016, 6, 37949.                                                                                                                     | 3.3 | 39        |
| 43 | Biomechanical properties of murine meniscus surface via AFM-based nanoindentation. Journal of<br>Biomechanics, 2015, 48, 1364-1370.                                                                                                              | 2.1 | 38        |
| 44 | Quantitative proteomics analysis of cartilage response to mechanical injury and cytokine treatment.<br>Matrix Biology, 2017, 63, 11-22.                                                                                                          | 3.6 | 35        |
| 45 | Transport of tissue inhibitor of metalloproteinases-1 through cartilage: Contributions of fluid flow and electrical migration. Journal of Orthopaedic Research, 1998, 16, 734-742.                                                               | 2.3 | 31        |
| 46 | In-situ removal of ammonium and lactate through electrical means for hybridoma cultures.<br>Biotechnology and Bioengineering, 1995, 47, 308-318.                                                                                                 | 3.3 | 30        |
| 47 | Creb5 establishes the competence for Prg4 expression in articular cartilage. Communications Biology, 2021, 4, 332.                                                                                                                               | 4.4 | 30        |
| 48 | Nondestructive Detection of Cartilage Degeneration Using Electromechanical Surface Spectroscopy.<br>Journal of Biomechanical Engineering, 1994, 116, 384-392.                                                                                    | 1.3 | 28        |
| 49 | Enzyme Pretreatment plus Locally Delivered HB-IGF-1 Stimulate Integrative Cartilage Repair <i>In<br/>Vitro</i> . Tissue Engineering - Part A, 2019, 25, 1191-1201.                                                                               | 3.1 | 28        |
| 50 | Modeling IL-1 induced degradation of articular cartilage. Archives of Biochemistry and Biophysics, 2016, 594, 37-53.                                                                                                                             | 3.0 | 27        |
| 51 | Articular cartilage of the knee 3 years after ACL reconstruction. Monthly Notices of the Royal<br>Astronomical Society: Letters, 2015, 86, 605-610.                                                                                              | 3.3 | 23        |
| 52 | Synthetic nanoscale electrostatic particles as growth factor carriers for cartilage repair.<br>Bioengineering and Translational Medicine, 2016, 1, 347-356.                                                                                      | 7.1 | 23        |
| 53 | Augmentation of mass transfer through electrical means for hydrogel-entrappedEscherichia coli cultivation. Biotechnology and Bioengineering, 1995, 48, 149-157.                                                                                  | 3.3 | 22        |
| 54 | Biomanufacturing in low Earth orbit for regenerative medicine. Stem Cell Reports, 2022, 17, 1-13.                                                                                                                                                | 4.8 | 22        |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Tissue-Engineered Versus Native Cartilage: Linkage between Cellular Mechano-Transduction and<br>Biomechanical Properties. Novartis Foundation Symposium, 2008, , 52-69.                                                                                       | 1.1 | 21        |
| 56 | Stress-vs-time signals allow the prediction of structurally catastrophic events during fracturing of immature cartilage and predetermine the biomechanical, biochemical, and structural impairment. Journal of Structural Biology, 2013, 183, 501-511.        | 2.8 | 21        |
| 57 | Growth Factor-Mediated Migration of Bone Marrow Progenitor Cells for Accelerated Scaffold Recruitment. Tissue Engineering - Part A, 2016, 22, 917-927.                                                                                                        | 3.1 | 21        |
| 58 | Wide bandwidth nanomechanical assessment of murine cartilage reveals protection of aggrecan knock-in mice from joint-overuse. Journal of Biomechanics, 2016, 49, 1634-1640.                                                                                   | 2.1 | 20        |
| 59 | Release of pro-inflammatory cytokines from muscle and bone causes tenocyte death in a novel rotator cuff in vitro explant culture model. Connective Tissue Research, 2018, 59, 423-436.                                                                       | 2.3 | 20        |
| 60 | Mechanobiological model for simulation of injured cartilage degradation via pro-inflammatory cytokines and mechanical stimulus. PLoS Computational Biology, 2020, 16, e1007998.                                                                               | 3.2 | 20        |
| 61 | Nutrient enrichment and in-situ waste removal through electrical means for hybridoma cultures.<br>Biotechnology and Bioengineering, 1995, 47, 319-326.                                                                                                        | 3.3 | 19        |
| 62 | Coculture of bovine cartilage with synovium and fibrous joint capsule increases aggrecanase and matrix metalloproteinase activity. Arthritis Research and Therapy, 2017, 19, 157.                                                                             | 3.5 | 17        |
| 63 | Human osteoarthritic chondrons outnumber patient†and jointâ€matched chondrocytes in hydrogel<br>culture—Future application in autologous cellâ€based OA cartilage repair?. Journal of Tissue<br>Engineering and Regenerative Medicine, 2018, 12, e1206-e1220. | 2.7 | 16        |
| 64 | Computational model for the analysis of cartilage and cartilage tissue constructs. Journal of Tissue<br>Engineering and Regenerative Medicine, 2016, 10, 334-347.                                                                                             | 2.7 | 14        |
| 65 | Chemoproteomics of matrix metalloproteases in a model of cartilage degeneration suggests functional biomarkers associated with posttraumatic osteoarthritis. Journal of Biological Chemistry, 2018, 293, 11459-11469.                                         | 3.4 | 14        |
| 66 | Multiscale Poroviscoelastic Compressive Properties of Mouse Supraspinatus Tendons Are Altered in<br>Young and Aged Mice. Journal of Biomechanical Engineering, 2018, 140, .                                                                                   | 1.3 | 12        |
| 67 | Microfracture Augmentation With Trypsin Pretreatment and Growth Factor–Functionalized<br>Self-assembling Peptide Hydrogel Scaffold in an Equine Model. American Journal of Sports Medicine,<br>2021, 49, 2498-2508.                                           | 4.2 | 12        |
| 68 | Systems Based Study of the Therapeutic Potential of Small Charged Molecules for the Inhibition of IL-1<br>Mediated Cartilage Degradation. PLoS ONE, 2016, 11, e0168047.                                                                                       | 2.5 | 11        |
| 69 | Dynamic nanomechanics of individual bone marrow stromal cells and cell-matrix composites during chondrogenic differentiation. Journal of Biomechanics, 2015, 48, 171-175.                                                                                     | 2.1 | 10        |
| 70 | Age-associated changes in the response of tendon explants to stress deprivation is sex-dependent.<br>Connective Tissue Research, 2020, 61, 48-62.                                                                                                             | 2.3 | 9         |
| 71 | Proteomic analysis reveals dexamethasone rescues matrix breakdown but not anabolic dysregulation in a cartilage injury model. Osteoarthritis and Cartilage Open, 2020, 2, 100099.                                                                             | 2.0 | 9         |
| 72 | Shear strain and inflammationâ€induced fixed charge density loss in the knee joint cartilage following<br>ACL injury and reconstruction: A computational study. Journal of Orthopaedic Research, 2022, 40,<br>1505-1522.                                      | 2.3 | 8         |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Loseâ€Dose Administration of Dexamethasone Is Beneficial in Preventing Secondary Tendon Damage in a<br>Stressâ€Deprived Joint Injury Explant Model. Journal of Orthopaedic Research, 2020, 38, 139-149. | 2.3 | 7         |
| 74 | Persistence Length of Cartilage Aggrecan Macromolecules Measured via Atomic Force Microscopy.<br>Macromolecular Symposia, 2004, 214, 1-4.                                                               | 0.7 | 6         |
| 75 | Nanoscale Poroelasticity of the Tectorial Membrane Determines Hair Bundle Deflections. Physical<br>Review Letters, 2019, 122, 028101.                                                                   | 7.8 | 5         |
| 76 | Spatial configuration of charge and hydrophobicity tune particle transport through mucus.<br>Biophysical Journal, 2022, 121, 277-287.                                                                   | 0.5 | 3         |
| 77 | Title is missing!. , 2020, 16, e1007998.                                                                                                                                                                |     | Ο         |
| 78 | Title is missing!. , 2020, 16, e1007998.                                                                                                                                                                |     | 0         |
| 79 | Title is missing!. , 2020, 16, e1007998.                                                                                                                                                                |     | Ο         |