Srinivasan Natarajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4761432/publications.pdf

Version: 2024-02-01

259 papers 13,584 citations

58 h-index 106 g-index

301 all docs

301 does citations

301 times ranked

8384 citing authors

#	Article	IF	Citations
1	Structural evolution of transition metal orthoborates (Zn ₃ B ₂ 6) with the Kotoite mineral structure: Synthesis, structure and properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	2
2	Câ^'C Coupling of Aryl Chlorides and Reduction of Nitroarenes to Amines Employing Recyclable Heterogeneous Green Catalysts. ChemNanoMat, 2022, 8, .	1.5	6
3	Intercalation of Nanoscale Multiferroic Spacers between the Two-Dimensional Interlayers of MXene. ACS Omega, 2022, 7, 20369-20375.	1.6	5
4	Postâ€Synthetic Modification of Metal–Organic Frameworks Toward Applications. Advanced Functional Materials, 2021, 31, 2006291.	7.8	266
5	Stuffed Tridymite Structures: Synthesis, Structure, Second Harmonic Generation, Optical, and Multiferroic Properties. Chemistry - A European Journal, 2021, 27, 1995-2008.	1.7	5
6	Frontispiece: Stuffed Tridymite Structures: Synthesis, Structure, Second Harmonic Generation, Optical, and Multiferroic Properties. Chemistry - A European Journal, 2021, 27, .	1.7	0
7	Aliphatic amine mediated assembly of [M6(mna)6] (M = Cu/Ag) into extended two-dimensional structures: synthesis, structure and Lewis acid catalytic studies. New Journal of Chemistry, 2021, 45, 6503-6511.	1.4	2
8	FriedlÃ ¤ der, Knoevenagel, and Michael Reactions Employing the Same MOF: Synthesis, Structure, and		

#	Article	IF	Citations
19	Encapsulation of Silver Nanoparticles in an Amineâ€Functionalized Porphyrin Metal–Organic Framework and Its Use as a Heterogeneous Catalyst for CO ₂ Fixation under Atmospheric Pressure. Chemistry - an Asian Journal, 2018, 13, 2677-2684.	1.7	40
20	Organization of Copper Azide Clusters into Twoâ€Dimensional Structures: Synthesis, Structure, and Magnetic Properties. European Journal of Inorganic Chemistry, 2017, 2017, 2173-2183.	1.0	5
21	Assembling Porphyrins into Extended Network Structures by Employing Aromatic Dicarboxylates: Synthesis, Metal Exchange, and Heterogeneous Catalytic Studies. Chemistry - A European Journal, 2017, 23, 8932-8940.	1.7	31
22	Selective Separation of Aliphatic Nitriles by Employing a Twoâ€Dimensional Interdigitated Coordination Polymer. Chemistry - an Asian Journal, 2017, 12, 1807-1815.	1.7	8
23	Syntheses, Structures, and Magnetic Behavior of New Azide Linked Compounds with One―and Twoâ€Dimensional Structures. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1730-1738.	0.6	2
24	Color Tuning in Garnet Oxides: The Role of Tetrahedral Coordination Geometry for 3 d Metal Ions and Ligand–Metal Charge Transfer (Bandâ€Gap Manipulation). Chemistry - an Asian Journal, 2017, 12, 2734-2743.	1.7	14
25	Fluorescent Metal–Organic Frameworks for Selective Sensing of Toxic Cations (Tl ³⁺ ,) Tj ETQq1 1 C).784314 1.3	rgBT /Overlo
26	Cover Feature: Syntheses, Structures, and Magnetic Behavior of New Azide Linked Compounds with One- and Two-Dimensional Structures (Z. Anorg. Allg. Chem. 22/2017). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1722-1722.	0.6	0
27	Solventâ€Dependent Delamination, Restacking, and Ferroelectric Behavior in a New Chargeâ€Separated Layered Compound: [NH ₄][Ag ₃ (C ₉ H ₅ NO ₄ 3Chemistry - an Asian Journal, 2017, 12, 101-109.	1 ^{3:7} /sub>	H ⁵ sub>14<
28	Switchable Roomâ€Temperature Ferroelectric Behavior, Selective Sorption and Solventâ€Exchange Studies of [H ₃ 0][Co ₂ (dat)(sdba) ₂]â <h<sub>2sdbaâ<5 H₂ChemPlusChem, 2016, 81, 733-742.</h<sub>) 1 0.	9
29	Adenineâ€Based Coordination Polymers: Synthesis, Structure, and Properties. European Journal of Inorganic Chemistry, 2016, 2016, 2962-2974.	1.0	20
30	Stabilization of the Anionic Metalloligand, [Ag ₆ (mna) ₆] ^{6–} (H ₂ mna = 2-Mercapto Nicotinic Acid), in ⟨i>cor⟨ i>, ⟨i⟩î±-Po⟨ i>, and ⟨i>sql⟨ i> Nets Employing Alkaline Earth Metal Ions: Synthesis, Structure, and Nitroaromatics Sensing Behavior. Crystal Growth and Design, 2016, 16, 3497-3509.	1.4	15
31	Selective Sensing of Nitrophenols by a Inorganic Coordination Polymer: [Cd ₂ (C ₄ H ₄ O ₅) ₂ (C ₅ H ₅ <td>oxMxsub></td> <td>-5₮/sub>)].⊩</td>	ox M xsub>	-5 ₮ /sub>)].⊩
32	Unique Colours of 3dâ€Transitionâ€Metalâ€Substituted Lyonsite Molybdates and Their Derivatives: The Role of Multiple Coordination Geometries and Metalâ€ŧoâ€Metal Charge Transfer. European Journal of Inorganic Chemistry, 2016, 2016, 3883-3891.	1.0	8
33	Palladium Nanoparticles Encapsulated in [M(C ₁₉ H ₁₁ N ₂ O ₂) ₂ A·H ₂ O] (M =) 2016, 16, 6992-6999.	Tj _{1.4} TQq1	1 9.784314
34	Frontispiece: Switchable Room-Temperature Ferroelectric Behavior, Selective Sorption and Solvent-Exchange Studies of [H3 O][Co2 (dat)(sdba)2]â‹H2 sdbaâ‹5 H2 O. ChemPlusChem, 2016, 81, .	1.3	0
35	Exploring the Colour of 3d Transitionâ€Metal Ions in Trigonal BipyÂramidal Coordination: Identification of Purpleâ€Blue (CoO ₅) and Beigeâ€Red (NiO ₅) Chromophores in LiMgBO ₃ Host. European Journal of Inorganic Chemistry, 2016, 2016, 288-293.	1.0	23
36	Stabilization of a Tetrahedral (Mn ⁵⁺ O ₄) Chromophore in Ternary Barium Oxides as a Strategy toward Development of New Turquoise/Green-Colored Pigments. Inorganic Chemistry, 2016, 55, 3508-3514.	1.9	26

#	Article	IF	Citations
37	Stabilization of Cu ₇ clusters in azide networks: syntheses, structures and magnetic behaviour. Dalton Transactions, 2016, 45, 5140-5150.	1.6	15
38	Interpenetrated and Catenated Zinc Thiosulfates Frameworks with <i>dia</i> and <i>qtz</i> Nets: Synthesis, Structure, and Properties. Crystal Growth and Design, 2016, 16, 2239-2248.	1.4	7
39	High Proton Mobility, Solvent Induced Single Crystal to Single Crystal Structural Transformation, and Related Studies on a Family of Compounds Formed from Mn ₃ Oxo-Clusters. Inorganic Chemistry, 2015, 54, 1254-1271.	1.9	37
40	Stabilization of Co ₃ – Oxoclusters in a <i>pcu</i> Net: Synthesis, Structure, Solvent Exchange (Single Crystal to Single Crystal) and Magnetic Studies. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2922-2930.	0.6	3
41	Organization of Mn-Clusters in <i>pcu</i> and <i>bcu</i> Networks: Synthesis, Structure, and Properties. Crystal Growth and Design, 2014, 14, 310-325.	1.4	48
42	A Reactive Intermediate, [Ni5(C6H4N3)6(CO)4], in the Formation of Nonameric Clusters of Nickel, [Ni9(C6H4N3)12(CO)6] and [Ni9(C6H4N3)12(CO)6].2(C3H7NO). Journal of Chemical Sciences, 2014, 126, 1477-1491.	0.7	6
43	[Cu'sub>6(<i>mna</i>)\sub>6]\sup>6â€" and [Ag\sub>6]\sup>4â€" 4â€" 4â€" (<i>Hmna</i>)\sub>2(<i>mna</i>)\sub>4]\sup>4â€" (<i>H</i>)\sub>2 <i>mna</i>)\sub>2 <i>mna<i>mna</i></i>	1.4	37
44	Rare-earth carboxylates, 2014, 14, 4531-4544. [Ln ₂ (<scp>iii</scp>)(ν ₃ -OH)(C ₄ H ₄ O ₅)(sub>)	>24/ .s ub>(C< 5 ub>4
45	Solid State and Solution Mediated Multistep Sequential Transformations in Metal–Organic Coordination Networks. Crystal Growth and Design, 2013, 13, 155-168.	1.4	27
46	Proton Conduction in Metal–Organic Frameworks and Related Modularly Built Porous Solids. Angewandte Chemie - International Edition, 2013, 52, 2688-2700.	7.2	658
47	Bismuth Carboxylates with Brucite- and Fluorite-Related Structures: Synthesis Structure and Properties. Crystal Growth and Design, 2013, 13, 1743-1751.	1.4	28
48	Metalâ€lon Metathesis in Metal–Organic Frameworks: A Synthetic Route to New Metal–Organic Frameworks. Chemistry - A European Journal, 2012, 18, 16642-16648.	1.7	90
49	Aza-heterocyclic ligand assisted assembly of new cobalt MOFs with pcu and graphite related structures. Dalton Transactions, 2012, 41, 4135.	1.6	34
50	Stabilization of O–Mn–O clusters (Mn5) in three dimensionally extended MOF structures: synthesis, structure and properties. CrystEngComm, 2012, 14, 4323.	1.3	16
51	Highly Luminescent and Thermally Stable Lanthanide Coordination Polymers Designed from 4-(Dipyridin-2-yl)aminobenzoate: Efficient Energy Transfer from Tb ³⁺ to Eu ³⁺ in a Mixed Lanthanide Coordination Compound. Inorganic Chemistry, 2012, 51, 8818-8826.	1.9	170
52	Synthesis, Structure, and Magnetic Properties of a New Eight-Connected Metal–Organic Framework (MOF) based on Co ₄ Clusters. Inorganic Chemistry, 2012, 51, 4495-4501.	1.9	51
53	The relevance of metal organic frameworks (MOFs) in inorganic materials chemistry. Journal of Chemical Sciences, 2012, 124, 339-353.	0.7	34
54	Liquidâ^'Liquid Interphase (Biphasic) as the Reaction Medium in the Assembly of a Hierarchy of Structures of 4,4′-Azodibenzoic Acid with Zinc and Cadmium. Crystal Growth and Design, 2011, 11, 735-747.	1.4	30

#	Article	IF	CITATIONS
55	Synthesis, Structure, Photochemical [2 + 2] Cycloaddition, Transformation, and Photocatalytic Studies in a Family of Inorganic–Organic Hybrid Cadmium Thiosulfate Compounds. Crystal Growth and Design, 2011, 11, 5741-5749.	1.4	57
56	Lanthanide Sulfate Frameworks: Synthesis, Structure, and Optical Properties. Crystal Growth and Design, 2011, 11, 1347-1356.	1.4	27
57	Usefulness of in Situ Single Crystal to Single Crystal Transformation (SCSC) Studies in Understanding the Temperature-Dependent Dimensionality Cross-over and Structural Reorganization in Copper-Containing Metal–Organic Frameworks (MOFs). Crystal Growth and Design, 2011, 11, 5415-5423.	1.4	36
58	CoMn2O4 spinel from a MOF: synthesis, structure and magnetic studies. Dalton Transactions, 2011, 40, 1952.	1.6	60
59	High-Throughput Study of the Cu(CH ₃ COO) ₂ ·H ₂ Oâ^'5-Nitroisophthalic Acidâ^'Heterocyclic Ligand System: Synthesis, Structure, Magnetic, and Heterogeneous Catalytic Studies of Three Copper Nitroisophthalates. Crystal Growth and Design. 2011. 11. 1357-1369.	1.4	29
60	New open-framework phosphate and phosphite compounds of gallium. Inorganica Chimica Acta, 2011, 372, 136-144.	1.2	18
61	Two- and Three-Dimensional Open-Framework Uranium Arsenates: Synthesis, Structure, and Characterization. Inorganic Chemistry, 2010, 49, 2931-2947.	1.9	16
62	Synthesis, structure, transformation studies and catalytic properties of open-framework cadmium thiosulfate compounds. Dalton Transactions, 2010, 39, 2263.	1.6	30
63	Magnetic behaviour in metal-organic frameworks—Some recent examples. Journal of Chemical Sciences, 2010, 122, 19-35.	0.7	28
64	Effect of metal ion doping on the photocatalytic activity of aluminophosphates. Journal of Chemical Sciences, 2010, 122, 771-785.	0.7	12
65	Synthesis, Structure, and Magnetic Properties of Amineâ€Templated Transitionâ€Metal Phosphites. European Journal of Inorganic Chemistry, 2010, 2010, 1829-1838.	1.0	11
66	Synthesis, Structure and Optical Studies of a Family of Threeâ€Dimensional Rareâ€Earth Aminoisophthalates [M(μ ₂ â€OH)(C ₈ H ₅ NO ₄)] (M =) Tj ET	Qq0 0 0 rş 1.0	gBT /Overlock 25
67	Inorganic Chemistry, 2010, 2010, 3813-3822. Hierarchy of structures in the family of amine templated open-framework gallium arsenates. Inorganica Chimica Acta, 2010, 363, 2929-2937.	1.2	2
68	A new open-framework zinc arsenate [C4N3H16]2[Zn5(AsO4)4(HAsO4)2]. Inorganic Chemistry Communication, 2010, 13, 163-166.	1.8	3
69	Synthesis, Structure, and Solid-State Transformation Studies of Phosphonoacetate Based Hybrid Compounds of Uranium and Thorium. Inorganic Chemistry, 2010, 49, 7927-7934.	1.9	47
70	Amine-Templated Aluminoborates Exhibiting Graphite and Diamond Nets. Crystal Growth and Design, 2010, 10, 765-774.	1.4	35
71	[B ₄ O ₉ H ₂] Cyclic Borate Units as the Building Unit in a Family of Zinc Borate Structures. Crystal Growth and Design, 2010, 10, 456-464.	1.4	58
72	Use of Polyazaheterocycles in the Assembly of New Cadmium Sulfate Frameworks: Synthesis, Structure, and Properties. Crystal Growth and Design, 2010, 10, 4161-4175.	1.4	38

#	Article	IF	Citations
73	Synthesis, structure and magnetic behavior of a new three-dimensional Manganese phosphite-oxalate: [C2N2H10][Mn2II(OH2)2(HPO3)2(C2O4)]. Journal of Solid State Chemistry, 2009, 182, 2491-2496.	1.4	9
74	Quasi-2D XY Magnetic Properties and Slow Relaxation in a Body Centered Metal Organic Network of [Co ₄] Clusters. Journal of the American Chemical Society, 2009, 131, 10140-10150.	6.6	126
75	The illustrative use of thiosulfate in the formation of new three-dimensional hybrid structures. CrystEngComm, 2009, 11, 55-57.	1.3	22
76	Adsorption $\hat{a} \in \text{``desorption'}$ and photocatalytic properties of inorganic $\hat{a} \in \text{``organic'}$ by thiosulfate compounds. Physical Chemistry Chemical Physics, 2009, 11, 11285.	1.3	80
77	Metal–organic framework structures – how closely are they related to classical inorganic structures?. Chemical Society Reviews, 2009, 38, 2304.	18.7	294
78	Synthesis, Structure, and Transformation Studies in a Family of Inorganicâ "Organic Hybrid Framework Structures Based on Indium. Inorganic Chemistry, 2009, 48, 11697-11711.	1.9	36
79	Non-carboxylate based metal-organic frameworks (MOFs) and related aspects. Current Opinion in Solid State and Materials Science, 2009, 13, 46-53.	5.6	22
80	Amino Acid Based MOFs: Synthesis, Structure, Single Crystal to Single Crystal Transformation, Magnetic and Related Studies in a Family of Cobalt and Nickel Aminoisophthales. Inorganic Chemistry, 2009, 48, 11660-11676.	1.9	113
81	Reversible Water Intercalation Accompanied by Coordination and Color Changes in a Layered Metalâ^'Organic Framework. Inorganic Chemistry, 2009, 48, 4942-4951.	1.9	64
82	Time- and Temperature-Dependent Study in the Three-Component Zinc-Triazolate-Oxybis(benzoate) System: Stabilization of New Topologies. Crystal Growth and Design, 2009, 9, 3683-3691.	1.4	56
83	The first observation of a Na2TiS2 related structure in a 2-D anionic manganese trimesate intercalated by cationic imidazole,. CrystEngComm, 2009, 11, 560.	1.3	8
84	Pillaring of CdCl ₂ â€Like Layers in Lanthanide Metal–Organic Frameworks: Synthesis, Structure, and Photophysical Properties. Chemistry - A European Journal, 2008, 14, 5839-5850.	1.7	100
85	Hierarchical Structures in Tin(II) Oxalates. European Journal of Inorganic Chemistry, 2008, 2008, 1376-1385.	1.0	18
86	Synthesis, Structure, and Magnetic Properties of a New Threeâ€Dimensional Iron Phosphite, [C ₄ N ₂ H ₁₂][Fe ₄ (H ₂ O) ₃ (HPO <sub=0.6. 1386-1391.<="" 2008,="" chemistry,="" european="" inorganic="" journal="" of="" td=""><td>b>3./dsub></td><td>·)<54b>7</td></sub=0.6.>	b> 3. /dsub>	·)< 54 b>7
87	The Use of Liquid–Liquid Interface (Biphasic) for the Preparation of Benzenetricarboxylate Complexes of Cobalt and Nickel. European Journal of Inorganic Chemistry, 2008, 2008, 3501-3514.	1.0	20
88	Openâ€Framework Structures of Transitionâ€Metal Compounds. Angewandte Chemie - International Edition, 2008, 47, 4798-4828.	7.2	337
89	Role of Temperature and Time in the Formation of Infinite â^'Mâ^'Oâ^'Mâ^' Linkages and Isolated Clusters in MOFs: A Few Illustrative Examples. Inorganic Chemistry, 2008, 47, 8451-8463.	1.9	150
90	A three-dimensional metal–organic framework with a distorted Kagome related layer showing canted antiferromagnetic behaviour. Chemical Communications, 2008, , 1278-1280.	2.2	71

#	Article	IF	CITATIONS
91	Synthesis, Structure, and Polymorphism Studies in Amine-Templated Open-Framework Zinc Phosphites. Inorganic Chemistry, 2008, 47, 5304-5313.	1.9	49
92	Inter-relationship between the structures of metal-organic frameworks: is there a role for an intermediate?. Studies in Surface Science and Catalysis, 2007, , 732-738.	1.5	0
93	Synthesis, structure and magnetic properties of an inorganic–organic hybrid compound. Journal of Materials Chemistry, 2007, 17, 980-985.	6.7	22
94	Amine-Templated Open-Framework Zinc Arsenates of Varying Dimensionalities:  Synthesis, Structure, Polymorphism, and Transformation Reactions. Inorganic Chemistry, 2007, 46, 10781-10790.	1.9	34
95	Synthesis, Structure, and Magnetic Properties of a Novel Pillared Layered Iron(III) Arsenate, [4,4â€⁻-bpyH ₂] ₃ [Fe ₉ (H ₂ O) ₆ F ₃ (Full Note of the Note	IAs Ω x sub	> 49 /sub>) <si< td=""></si<>
96	Synthesis, Structure, and Upconversion Studies on Organically Templated Uranium Phosphites. Inorganic Chemistry, 2007, 46, 7935-7943.	1.9	29
97	Photocatalytic Degradation of Dyes and Organics with Nanosized GdCoO3. Journal of Physical Chemistry C, 2007, 111, 1665-1674.	1.5	83
98	The role of temperature on the structure and dimensionality of MOFs: an illustrative study of the formation of manganese oxy-bis(benzoate) structures. Chemical Communications, 2007, , 4471.	2.2	113
99	A New Series of Three-Dimensional Metalâ^'Organic Framework, [M2(H2O)][C5N1H3(COO)2]3·2H2O, M = La, Pr, and Nd: Synthesis, Structure, and Properties. Inorganic Chemistry, 2007, 46, 1250-1258.	1.9	114
100	Synthesis, structure and optical properties of rare-earth benzene carboxylates. Dalton Transactions, 2007, , 4017.	1.6	60
101	Inorganic–Organic Hybrid Structures: Open-Framework Iron Phosphite–Oxalates of Varying Dimensionality. Chemistry - A European Journal, 2007, 13, 968-977.	1.7	40
102	New photocatalysts based on mixed-metal pyridine dicarboxylates. Catalysis Letters, 2007, 115, 27-32.	1.4	39
103	Assembly of a Secondary Building Unit (SBU) into Two- and Three-Dimensional Structures in Lanthanide Benzenedicarboxylates. Crystal Growth and Design, 2006, 6, 983-988.	1.4	50
104	Polymorphism of [Zn(2,2′-bipy)(H2PO4)2]2. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 37-41.	0.6	6
105	Novel Photocatalysts for the Decomposition of Organic Dyes Based on Metal-Organic Framework Compounds. Journal of Physical Chemistry B, 2006, 110, 13759-13768.	1.2	297
106	The use of hydrothermal methods in the synthesis of novel open-framework materials. Journal of Chemical Sciences, 2006, 118, 525-536.	0.7	31
107	Synthesis, structure and magnetic properties of the polyoxovanadate cluster [Zn2(NH2(CH2)2NH2)5][{Zn(NH2(CH2)2NH2)2}2{V18O42(H2O)}].xH2O (x â^¼ 12), possessing a layered structure].xH2O (x â^¼ 12), possessing a layered structure. Journal of Chemical Sciences, 2006, 118, 57-65.	0.7	4
108	Synthesis of open-framework zinc phosphite structures of varying dimensionality. Solid State Sciences, 2006, 8, 388-396.	1.5	17

#	Article	IF	CITATIONS
109	Inorganic–organic hybrid structures: Synthesis, structure and magnetic properties of a new iron oxalatoarsenate, [NH3(CH2)CH(NH3)CH3]3[Fe6(AsO4)2(HAsO4)6(C2O4)3]. Solid State Sciences, 2006, 8, 692-697.	1.5	8
110	Hydrothermal synthesis, structure and magnetic properties of a new three-dimensional iron arsenate [C6N4H21][FellI3(HAsO4)6]. Materials Research Bulletin, 2006, 41, 973-980.	2.7	5
111	Amine-Intercalated Layered SnII Phosphates with Open-Framework Structures. European Journal of Inorganic Chemistry, 2006, 2006, 3463-3471.	1.0	7
112	Synthesis, structure and properties of a new layered gadolinium benzenedicarboxylate with piperazine. Inorganica Chimica Acta, 2005, 358, 4051-4056.	1.2	4
113	Hydrothermal synthesis and structures of two zero-dimensional zinc phosphate polymorphs. Solid State Sciences, 2005, 7, 1542-1548.	1.5	4
114	Pyridine- and Imidazoledicarboxylates of Zinc: Hydrothermal Synthesis, Structure, and Properties. European Journal of Inorganic Chemistry, 2005, 2005, 2156-2163.	1.0	115
115	Hydrothermal Synthesis and Structure of [(C4N2H12)3] [P2Mo5O23]×H2O and [(C3N2H12)3] [P2Mo5O23]×4H2O ChemInform, 2005, 36, no.	0.1	О
116	Chain Structures in Alkali Metal Borophosphates: Synthesis and Characterization of K3[BP3O9(OH)3] and Rb3[B2P3O11(OH)2] ChemInform, 2005, 36, no.	0.1	0
117	Inorganic–organic hybrid structure: Synthesis, structure and magnetic properties of a cobalt phosphite–oxalate, [C4N2H12][Co4(HPO3)2(C2O4)3]. Journal of Solid State Chemistry, 2005, 178, 2376-2382.	1.4	41
118	Hydrothermal synthesis and structure of [(C4N2H12)3][P2Mo5O23]·H2O and [(C3N2H12)3][P2Mo5O23]·4H2O. Journal of Chemical Sciences, 2005, 117, 219-226.	0.7	15
119	[C10N2H10][ZnCl(HPO4)]2: A New Templated Zincophosphate Containing Tetrahedral Nets with 63 Topology. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 1622-1626.	0.6	9
120	Chain Structures in Alkali Metal Borophosphates:Â Synthesis and Characterization of K3[BP3O9(OH)3] and Rb3[B2P3O11(OH)2]. Inorganic Chemistry, 2005, 44, 6431-6438.	1.9	27
121	Inorganicâ^'Organic Hybrid Compounds:Â Synthesis, Structure, and Magnetic Properties of the First Organically Templated Iron Oxalateâ^'Phosphite, [C4N2H12][Fell4(HPO3)2(C2O4)3], Possessing Infinite Feâ^'Oâ^'Fe Chains. Chemistry of Materials, 2005, 17, 2912-2917.	3.2	42
122	A novel sheet 4f–3d mixed-metal pyridine dicarboxylate: synthesis, structure, photophysical properties and its transformation to a perovskite oxide. Chemical Communications, 2005, , 5787.	2.2	77
123	The First One-Dimensional Iron Phosphiteâ^'Phosphate, [FeIII(2,2 -bipyridine)(HPO3)(H2PO4)]: Synthesis, Structure, and Magnetic Properties. Chemistry of Materials, 2005, 17, 638-643.	3.2	41
124	Hydrothermal synthesis, structure and luminescent properties of one-dimensional lanthanide benzenedicarboxylates, [M(NO3)M2(C12H8N2)2][(C8H4O4)4]·H2O, (M = La, Pr), possessing infinite M–O–M linkages. Journal of Materials Chemistry, 2005, 15, 4588.	6.7	64
125	Diamondoid Networks. , 2004, , 1-12.		1
126	Yttrium coordination polymers with layered structures. Solid State Sciences, 2004, 6, 599-604.	1.5	12

#	Article	IF	CITATIONS
127			

#	Article	IF	Citations
145	Hydrothermal synthesis of an open-framework manganese oxalate incorporating KCl chains. Materials Research Bulletin, 2003, 38, 477-483.	2.7	10
146	Solvothermal Synthesis of a Layered Open-Framework Chlorocadmium Oxalate, Cd2(C2O4)0.5Cl3NaCl·4H2O. European Journal of Inorganic Chemistry, 2003, 2003, 1675-1680.	1.0	32
147	Synthesis, Structure and Magnetic Properties of a New Iron Arsenate, [C10N4H28][{FeF(OH)(HAsO4)}4], with a Layer Structure. European Journal of Inorganic Chemistry, 2003, 2003, 3820-3825.	1.0	24
148	Synthesis and Structure of a One-Dimensional Aluminum Phosphate, [NH3(CH2)2NH2 (CH2)3NH3]3+â^ž1[Al(PO4)2]3 ChemInform, 2003, 34, no.	0.1	0
149	Solution Mediated Synthesis and Structure of the First Anionic Bis-(hexaborato)-Zincate Prepared in the Presence of an Organic Amine ChemInform, 2003, 34, no.	0.1	0
150	Synthesis of a Single Four-Ring (S4R) Molecular Zinc Phosphate and Its Assembly to an Extended Polymeric Structure: A Single-Crystal and in situ MAS NMR Investigation ChemInform, 2003, 34, no.	0.1	0
151	Hydrothermal synthesis and crystal structure of a two-dimensional zinc vanadate, [(NH3(CH2)3NH)Zn]23+[V4O13]6â°. Inorganica Chimica Acta, 2003, 348, 233-236.	1.2	11
152	Synthesis, structure and magnetic characterization of a one-dimensional iron phosphate,. Journal of Solid State Chemistry, 2003, 173, 367-373.	1.4	22
153	Title is missing!. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629, 959-962.	0.6	20
154	Synthesis and Structure of the First Three-legged Low-dimensional Iron Phosphate, [H3N(CH2)3NH2(CH2)2NH2(CH2)3NH3][Fe3F6(HPO4)2(PO4)]·3H2O. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629, 2549-2553.	0.6	3
155	Synthesis and Structure of a Molecular Zinc Phosphate [(C12H8N2Zn)2(HPO4)(H2PO4)2]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629, 2543-2548.	0.6	8
156	Observation of tancoite-like chains in a one-dimensional metal–organic polymer. Journal of Materials Chemistry, 2003, 13, 2937-2941.	6.7	34
157	Synthesis of a Single Four-Ring (S4R) Molecular Zinc Phosphate and Its Assembly to an Extended Polymeric Structure:Â A Single-Crystal and in-Situ MAS NMR Investigation. Inorganic Chemistry, 2003, 42, 6265-6273.	1.9	52
158	Open-Framework Cadmium Succinates with Interpenetrating Frameworks Formed by Tetrahedral [ClCd4O24] and [BrCd4O24] Clusters. Crystal Growth and Design, 2003, 3, 47-51.	1.4	38
159	Synthesis and structure of a new three-dimensional indium phosphate with 16-membered one-dimensional channelsElectronic supplementary information (ESI) available: TGA analysis and 1H decoupled 31P MAS NMR spectrum for I. See http://www.rsc.org/suppdata/dt/b3/b303998f/. Dalton Transactions. 2003 3387.	1.6	33
160	Aliphatic dicarboxylates with three-dimensional metal–organic frameworks possessing hydrophobic channels. Dalton Transactions, 2003, , 1459-1464.	1.6	76
161	TOWARDS UNDERSTANDING OF THE FORMATION OF OPEN-FRAMEWORK SOLIDS: THE RELATIONSHIP BETWEEN BUILDING UNITS, DIMENSIONALITY AND STRUCTURE. , 2003, , .		1
162	An Unusual Open-Framework Cobalt(II) Phosphate with a Channel Structure That Exhibits Structural and Magnetic Transitions. World Scientific Series in 20th Century Chemistry, 2003, , 489-491.	0.0	0

#	Article	IF	CITATIONS
163	Hydrothermal Synthesis and Structures of Three-Dimensional Zinc Phosphates Built-Up from Two-Dimensional Layers and One-Dimensional Chains and Ladders. Crystal Growth and Design, 2002, 2, 665-673.	1.4	15
164	Synthesis and Characterization of a New Ferrimagnetic Mixed-Valent Iron Fluorophosphate [C6N4H21][FellI3-xFellxF2(PO4)(HPO4)2]2($x\hat{a}^4$ 1.5) with a Layered Structure. Chemistry of Materials, 2002, 14, 3751-3757.	3.2	27
165	Open-Framework Cadmium Succinates of Different Dimensionalities. Inorganic Chemistry, 2002, 41, 5226-5234.	1.9	70
166	Three-Dimensional Open-Framework Neodymium Oxalates with Organic Functional Groups Protruding in 12-Member Channels. Inorganic Chemistry, 2002, 41, 4496-4501.	1.9	77
167	Hydro/Solvothermal Synthesis and Structures of New Zinc Phosphates of Varying Dimensionality. Inorganic Chemistry, 2002, 41, 5530-5537.	1.9	36
168	Synthesis of a layered zinc phosphate, [NH3(CH2)2NH2(CH2)3NH3][Zn2(PO4)(HPO4)2]·H2O, and its transformation to a extra-large pore three-dimensional zinc phosphate, [NH3(CH2)2NH2(CH2)3NH3][Zn3(PO4)(HPO4)3]. Chemical Communications, 2002, , 780-781.	2.2	25
169	Synthesis and structure of a layered zinc phosphate–acetate, [C5H10NH2]2[Zn(ZnO2CCH3)(PO4)(HPO4)]. Dalton Transactions RSC, 2002, , 2088-2091.	2.3	8
170	An open-framework zincoborate formed by Zn6B12O24 clusters. Dalton Transactions RSC, 2002, , $1535-1538$.	2.3	57
171	Hydrothermal synthesis and structure of a zinc arsenate–oxalate, [NH3(CH2)3NH2(CH2)3NH3][Zn3(AsO4)(HAsO4)2(C2O4)], and a zinc arsenate, [{NH3(CH3)2NH2(CH3)3NH3}2][Zn6(AsO4)4(HAsO4)3]·H2O, with three-dimensional structures. Dalton Transactions RSC. 2002 4156.	2.3	16
172	Solution mediated synthesis and structure of a three-dimensional zinc arsenate, [NH3(CH2)3NH2(CH2)2NH3][Zn4(AsO4)3(HAsO4)]·H2O, with intersecting helical channels. Dalton Transactions RSC, 2002, , 3874-3878.	2.3	25
173	Transformations of two-dimensional layered zinc phosphates to three-dimensional and one-dimensional structures. Journal of Materials Chemistry, 2002, 12, 1044-1052.	6.7	41
174	Assembling \hat{l}^2 -Octamolybdate Clusters into New Polyoxomolybdates with Unusual Architectures. Crystal Growth and Design, 2002, 2, 333-335.	1.4	35
175	Synthesis and structure of a zinc oxalate with honeycomb layers and zinc phosphates with one- and three-dimensional structures. Solid State Sciences, 2002, 4, 1331-1342.	1.5	29
176	Hydrothermal synthesis of the first iron arsenate-oxalate [C4N2H12]2[Fe4(HAsO4)6(C2O4)2], possessing open architecture. Solid State Sciences, 2002, 4, 405-412.	1.5	16
177	A layered zinc oxalate possessing a 12-membered honeycomb aperture, stabilized by an amine and an alkali cation. Solid State Sciences, 2002, 4, 633-639.	1.5	11
178	A Reactive Intermediate in the Synthesis of Iron Arsenates: Synthesis of the First One-Dimensional Iron Arsenate Oxalate and Its Transformation into Two- and Three-Dimensional Iron Arsenates. Angewandte Chemie - International Edition, 2002, 41, 1224-1226.	7.2	49
179	Open-Framework Rubidium Halides Incorporated in Cadmium Oxalate Host Lattices. Journal of Solid State Chemistry, 2002, 167, 274-281.	1.4	3
180	Synthesis of Open-Framework Iron Phosphates, [C6N2H14][FeIII2F2(HPO4)2(H2PO4)2]·2H2O and [C6N2H14]2[FeIII3(OH)F3(PO4)(HPO4)2]2·H2O, with One- and Three-Dimensional Structures. Journal of Solid State Chemistry, 2002, 165, 334-344.	1.4	33

#	Article	IF	Citations
181	Novel Inorganic Coordination Polymers Based on Cadmium Oxalates. Journal of Solid State Chemistry, 2002, 166, 128-141.	1.4	22
182	Three-Dimensional Yttrium Oxalates Possessing Large Channels. Chemistry of Materials, 2001, 13, 185-191.	3.2	81
183	Transformations of low-dimensional zinc phosphates to complex open-framework structures. Part 1: zero-dimensional to one-, two- and three-dimensional structures. Journal of Materials Chemistry, $2001, 11, 1181-1191$.	6.7	114
184	First porous one-dimensional mixed valent iron molybdophosphate. Solid State Sciences, 2001, 3, 373-379.	0.8	14
185	Transformations of the low-dimensional zinc phosphates to complex open-framework structures. Part 2: one-dimensional ladder to two- and three-dimensional structures. Journal of Materials Chemistry, 2001, 11, 1537-1546.	6.7	103
186	Direct in situ observation of increasing structural dimensionality during the hydrothermal formation of open-framework zinc phosphates. Chemical Communications, 2001, , 1990-1991.	2.2	51
187	A zinc phosphate oxalate with phosphate layers pillared by the oxalate units. Dalton Transactions RSC, 2001, , 289-291.	2.3	21
188	Cyclic acetate dimers formed by C–H···O hydrogen bonds in an open-framework zinc phosphate-acetate. New Journal of Chemistry, 2001, 25, 213-215.	1.4	13
189	Synthesis of a hierarchy of zinc oxalate structures from amine oxalates. Dalton Transactions RSC, 2001, , 699-706.	2.3	76
190	Aufbau Principle of Complex Open-Framework Structures of Metal Phosphates with Different Dimensionalities. Accounts of Chemical Research, 2001, 34, 80-87.	7.6	372
191	Hybrid Inorganicâ^'Organic Hostâ^'Guest Compounds:Â Open-Framework Cadmium Oxalates Incorporating Novel Extended Structures of Alkali Halides. Chemistry of Materials, 2001, 13, 3524-3533.	3.2	28
192	Open-Framework Zinc Phosphates with Unusual Architectures. Crystal Growth and Design, 2001, 1, 491-499.	1.4	11
193	Synthesis and characterization of submicron-sized mesoporous aluminosilicate spheres. Journal of Chemical Sciences, 2001, 113, 227-234.	0.7	7
194	Synthons and design in metal phosphates and oxalates with open architectures. Acta Crystallographica Section B: Structural Science, 2001, 57, 1-12.	1.8	39
195	One-dimensional zinc phosphates with linear chain structure. Journal of Physics and Chemistry of Solids, 2001, 62, 1481-1491.	1.9	26
196	Linear-Chain AlPOs Obtained by the Reaction of Amine Phosphates with Al3+ Ions. Journal of Solid State Chemistry, 2001, 156, 185-193.	1.4	18
197	A Layered Zinc Phosphate, [C6N4H22][Zn6(PO4)4(HPO4)2], Formed by One-Dimensional Tubes. Journal of Solid State Chemistry, 2001, 157, 110-116.	1.4	21
198	Open-Framework Cadmium Oxalates with Channels Stabilized by Alkali Metal Ions. Journal of Solid State Chemistry, 2001, 162, 150-157.	1.4	23

#	Article	IF	Citations
199	The First Open-Framework Cadmium Phosphate, K4[Cd3(HPO4)4(H2PO4)2], with a Layered Structure. Journal of Solid State Chemistry, 2001, 162, 188-194.	1.4	16
200	A three-dimensional zeolitic zinc phosphate, [C8N5H28][Zn5(PO4)5]H2O, with thomsonite structure. Journal of Physics and Chemistry of Solids, 2001, 62, 1499-1505.	1.9	20
201	Hybrid Open-Framework Iron Phosphate-Oxalates Demonstrating a Dual Role of the Oxalate Unit. Chemistry - A European Journal, 2000, 6, 1168-1175.	1.7	32
202	A Hybrid Open-Framework Aluminum Phosphate-Oxalate Possessing Large Circular 12-Membered Channels. Journal of Solid State Chemistry, 2000, 150, 324-329.	1.4	40
203	Building Open-Framework Metal Phosphates from Amine Phosphates and a Monomeric Four-Membered Ring Phosphate. Journal of Solid State Chemistry, 2000, 152, 302-321.	1.4	58
204	A Three-Dimensional Iron(III) Phosphate, [C2N2H10]2[Fe5F4(PO4)(HPO4)6]. Journal of Solid State Chemistry, 2000, 154, 507-513.	1.4	25
205	Layered Cobalt Phosphates by the Amine Phosphate Route. Journal of Solid State Chemistry, 2000, 155, 62-70.	1.4	32
206	An Unusual Open-Framework Cobalt(II) Phosphate with a Channel Structure That Exhibits Structural and Magnetic Transitions. Angewandte Chemie - International Edition, 2000, 39, 3091-3093.	7.2	56
207	Fascinating Alkali Halide Structures of Different Dimensionalities Incorporated in Host Lattices. Angewandte Chemie - International Edition, 2000, 39, 3470-3473.	7.2	36
208	Three-dimensional open-framework Coll and ZnII phosphates synthesized via the amine phosphate route. Solid State Sciences, 2000, 2, 87-98.	1.5	27
209	Inorganic hybrid open-framework structures: synthesis and structure of a cobalt phosphate-oxalate, [C4N2H12]0.5[Co2(HPO4)(C2O4)1.5]. Solid State Sciences, 2000, 2, 365-372.	1.5	41
210	The direct synthesis and characterization of the pillared layer indium phosphate Na4[In8(HPO4)14(H2O)6]·12(H2O). Materials Research Bulletin, 2000, 35, 1007-1015.	2.7	13
211	Inorganic-organic hybrid framework solids. Journal of Chemical Sciences, 2000, 112, 249-272.	0.7	9
212	Bohrium â€" A new element in the periodic table. Resonance, 2000, 5, 95-100.	0.2	0
213	A layered aluminum phosphate, [C2N2H10][Al2(OH)2H2O(PO4)2]H2O, by the amine phosphate route. Solid State Sciences, 2000, 2, 87-94.	0.8	10
214	A new three-dimensional open-framework iron(III) phosphate, [C2N2H10][Fe2(HPO4)4]. Solid State Sciences, 2000, 2, 217-223.	0.8	13
215	Synthesis and structure of an open-framework chlorophosphate, [C6NH14][ZnCl(HPO4)]. Journal of Materials Chemistry, 2000, 10, 1171-1175.	6.7	25
216	Simple linear-chain cobalt phosphates. Dalton Transactions RSC, 2000, , 2595-2598.	2.3	27

#	Article	IF	Citations
217	Synthesis and structure of the first open-framework cadmium oxalate possessing channels. Chemical Communications, 2000, , 1251-1252.	2.2	68
218	Solution-mediated synthesis of a three-dimensional zinc phosphate in the presence of a monoamine. Journal of Materials Chemistry, 2000, 10, 2606-2608.	6.7	16
219	Three-Dimensional Open-Framework Cobalt(II) Phosphates by Novel Routes. Inorganic Chemistry, 2000, 39, 1426-1433.	1.9	97
220	Formation of One-, Two-, and Three-Dimensional Open-Framework Zinc Phosphates in the Presence of a Tetramine. Inorganic Chemistry, 2000, 39, 4295-4304.	1.9	116
221	Exploration of a Simple Universal Route to the Myriad of Open-Framework Metal Phosphates. Journal of the American Chemical Society, 2000, 122, 2810-2817.	6.6	208
222	Three-Dimensional Zinc Phosphates with Open Architectures. Chemistry of Materials, 2000, 12, 2753-2762.	3.2	44
223	Zn4O4 tetrameric clusters in a zinc phosphate with channels. Dalton Transactions RSC, 2000, , 2499-2500.	2.3	14
224	Hybrid Open-Framework Iron Phosphate-Oxalates Demonstrating a Dual Role of the Oxalate Unit. Chemistry - A European Journal, 2000, 6, 1168-1175.	1.7	59
225	A synthetic iron phosphate mineral, spheniscidite, [NH4]+[Fe2(OH)(H2O)(PO4)2]â^H2O, exhibiting reversible dehydration. Journal of Chemical Sciences, 1999, 111, 627-637.	0.7	14
226	Open-Framework Zinc Phosphates Synthesized in the Presence of Structure-Directing Organic Amines. Journal of Solid State Chemistry, 1999, 147, 154-169.	1.4	70
227	Synthesis and Structure of a New Open-Framework Tin(II) Phosphate, [NH3CH2CH(NH3)CH3]0.5[Sn4P3O12]·H2O, Possessing One-Dimensional Channels. Journal of Solid State Chemistry, 1999, 148, 50-55.	1.4	11
228	Amine Phosphates as Intermediates in the Formation of Open-Framework Structures. Angewandte Chemie - International Edition, 1999, 38, 3480-3483.	7.2	77
229	An open-framework iron phosphate with large voids, exhibiting spin-crossover. Chemical Communications, 1999, , 1305-1306.	2.2	58
230	Three-dimensional open-framework zinc phosphates with the structure-directing organic amines acting as ligands. New Journal of Chemistry, 1999, 23, 303-307.	1.4	52
231	A novel open-framework zinc phosphate with intersecting helical channels. Chemical Communications, 1999, , 165-166.	2.2	118
232	A hybrid openâ€framework structure: synthesis and structure of an iron phosphate oxalate, [C10N4H28][Fe2(HPO4)3(C2O4)]2. Journal of Materials Chemistry, 1999, 9, 3113-3117.	6.7	30
233	Unusual dual role of the organic amine in an openÂframework structure. Journal of Materials Chemistry, 1999, 9, 2789-2793.	6.7	30
234	New Open-Framework Zinc Oxalates Synthesized in the Presence of Structure-Directing Organic Amines. Chemistry of Materials, 1999, 11, 3636-3642.	3.2	96

#	Article	IF	CITATIONS
235	New open-framework layered tin(II) phosphates intercalated with amines. Journal of Materials Chemistry, 1999, 9, 1807-1811.	6.7	13
236	A zinc phosphate, [NH3(CH2)3NH3][Zn4(PO4)2(HPO4)2], possessing alternate inorganic and organic layers. Solid State Sciences, 1999, 1, 317-323.	0.8	25
237	A Zinc Phosphate Possessing Ladder-like Layers Made Up of Three- and Four-Membered Rings and Infinite Znâ-''Oâ-''Zn Chains. Chemistry of Materials, 1999, 11, 1390-1395.	3.2	79
238	A Hybrid Open-Framework Iron Phosphateâ^'Oxalate with a Large Unidimensional Channel, Showing Reversible Hydration. Chemistry of Materials, 1999, 11, 2316-2318.	3.2	99
239	Layered Tin(II) Oxalates Possessing Large Apertures. Chemistry of Materials, 1999, 11, 1633-1639.	3.2	67
240	Synthesis and Structure of a Tin(II) Phosphatooxalate, Sn2(PO4)[C2O4]0.5, Containing One-Dimensional Tin Phosphate Chains. Journal of Solid State Chemistry, 1998, 139, 200-203.	1.4	42
241	Synthesis and Structural Characterization of a Layered Tin(II) Phosphate, [Sn2(PO4)2]2â°'[C2N2H10]2+·H2O. Journal of Solid State Chemistry, 1998, 140, 435-439.	1.4	27
242	Synthesis and structural characterization of a novel tin(II) phosphonate, Sn2(O3PCH3)(C2O4). Journal of Materials Chemistry, 1998, 8, 1477-1479.	6.7	50
243	A three-dimensional open-framework tin(II) phosphate exhibiting reversible dehydration and ion-exchange properties. Chemical Communications, 1998, , 1561-1562.	2.2	30
244	Synthesis and structural characterization of a novel tin (II) oxyphosphate, [NH4+]2[Sn3O(PO4)2]2â^'·H2O, containing one-dimensional chains constructed from tin phosphate cages. Journal of Materials Chemistry, 1998, 8, 2757-2760.	6.7	8
245	Novel Open-Framework Tin(II) Phosphate Materials Containing Snâ^'Oâ^'Sn Linkages and Three-Coordinated Oxygens. Chemistry of Materials, 1998, 10, 1627-1631.	3.2	38
246	Tin(II) Oxalates Synthesized in the Presence of Structure-Directing Organic Amines:Â Members of a Potentially Vast Class of New Open-Framework and Related Materials. Chemistry of Materials, 1998, 10, 3746-3755.	3.2	67
247	Synthesis and structure of an open-framework tin phosphate, [H3N(CH2)4NH3]0.5 2+[Sn4P3O12] â^', containing intersecting channels. Chemical Communications, 1997, , 1089-1090.	2.2	29
248	[H3N(CH2)2NH3]0.52+[Sn4P3O12]â^': An Open-Framework Tin(II) Phosphate. Angewandte Chemie International Edition in English, 1997, 36, 978-980.	4.4	52
249	Synthesis and Characterization of a New Zinc Phosphate, [NH3(CH2)4NH3]2+[Zn2P3O9(OH)3]2â^', Containing Alternating Inorganic–Organic Layers. Journal of Solid State Chemistry, 1997, 132, 229-234.	1.4	34
250	First Example of a Tin(II) Oxy-Phosphate with an Open-Framework Structure: Synthesis and Structure of [NH4]+[(Sn3O)2(PO4)3]â^2. Journal of Solid State Chemistry, 1997, 134, 207-210.	1.4	30
251	Synthesis and structure of a three-dimensional open-framework aluminophosphate [NH2(CH2)3NH3]+[HAl3P3O14]–·H2O, containing AlO5and AlO6polyhedra. Chemical Communications, 1996, , 1415-1416.	2.2	28
252	A Novel Open-Framework Cobalt Phosphate Containing a Tetrahedrally Coordinated Cobalt(II) Center: CoPO4· 0.5 C2H10N2. Angewandte Chemie International Edition in English, 1994, 33, 639-640.	4.4	216

#	Article	IF	CITATIONS
253	Ein neues Cobaltphosphat mit Hohlraumstruktur und tetraedrisch koordinierten Co ^{II} â€Zentren: CoPO ₄ · 0.5 C ₂ H ₁₀ N ₂ . Angewandte Chemie, 1994, 106, 667-668.	1.6	29
254	In situ x-ray diffraction study of crystallization kinetics in PbZr1-xTixO3, (PZT, $x = 0.0, 0.55, 1.0$). Chemistry of Materials, 1994, 6, 750-754.	3.2	138
255	A reactive template in the synthesis of a novel layered aluminium phosphate (Al3P4O16)3–[NH3(CH2)5NH3]2+(C5H10NH2)+. Journal of the Chemical Society Chemical Communications, 1994, , 565-566.	2.0	56
256	Synthesis and structure of a novel large-pore microporous magnesium-containing aluminophosphate (DAF-1). Journal of the Chemical Society Chemical Communications, 1993, , 633.	2.0	63
257	Combined QuEXAFS-XRD: a new technique in high-temperature materials chemistry; an illustrative in situ study of the zinc oxide-enhanced solid-state production of cordierite from a precursor zeolite. The Journal of Physical Chemistry, 1993, 97, 9550-9554.	2.9	146
258	A novel porous sheet aluminophosphate: Al3P4O16 3? 1.5[NH3(CH2)4NH3]2+. Journal of the Chemical Society Chemical Communications, 1992, , 929.	2.0	95
259	Solving the Structure of a Metal-Substituted Aluminum Phosphate Catalyst by Electron Microscopy, Computer Simulation, and X-ray Powder Diffraction. Angewandte Chemie International Edition in English, 1992, 31, 1472-1475.	4.4	74