Wei Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4761372/publications.pdf

Version: 2024-02-01

57631 60497 10,446 81 44 81 citations h-index g-index papers 81 81 81 10795 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nature Energy, 2022, 7, 229-237.	19.8	137
2	Encapsulation and Stability Testing of Perovskite Solar Cells for Real Life Applications. ACS Materials Au, 2022, 2, 215-236.	2.6	41
3	Rear Electrode Materials for Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	49
4	Methylammonium and Bromideâ€Free Tinâ€Based Low Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	18
5	Evaporated potassium chloride for double-sided interfacial passivation in inverted planar perovskite solar cells. Journal of Energy Chemistry, 2021, 54, 493-500.	7.1	28
6	Engineering of dendritic dopant-free hole transport molecules: enabling ultrahigh fill factor in perovskite solar cells with optimized dendron construction. Science China Chemistry, 2021, 64, 41-51.	4.2	55
7	Charge-transfer induced multifunctional BCP:Ag complexes for semi-transparent perovskite solar cells with a record fill factor of 80.1%. Journal of Materials Chemistry A, 2021, 9, 12009-12018.	5.2	29
8	A Review on Encapsulation Technology from Organic Light Emitting Diodes to Organic and Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2100151.	7.8	114
9	Interfacial stabilization for inverted perovskite solar cells with long-term stability. Science Bulletin, 2021, 66, 991-1002.	4.3	45
10	Enhanced Light Emission Performance of Mixed Cation Perovskite Filmsâ€"The Effect of Solution Stoichiometry on Crystallization. Advanced Optical Materials, 2021, 9, 2100393.	3.6	6
11	The Nonâ€Innocent Role of Holeâ€Transporting Materials in Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100514.	3.1	18
12	Metal oxide charge transport layers in perovskite solar cellsâ€"optimising low temperature processing and improving the interfaces towards low temperature processed, efficient and stable devices. JPhys Energy, 2021, 3, 012004.	2.3	11
13	Efficient Perovskite Solar Cells with a Novel Aggregationâ€Induced Emission Molecule as Holeâ€Transport Material. Solar Rrl, 2020, 4, 1900189.	3.1	14
14	Stabilizing n-type hetero-junctions for NiO _x based inverted planar perovskite solar cells with an efficiency of 21.6%. Journal of Materials Chemistry A, 2020, 8, 1865-1874.	5.2	40
15	Mixed Spacer Cation Stabilization of Blueâ€Emitting <i>n</i> = 2 Ruddlesden–Popper Organic–Inorganic Halide Perovskite Films. Advanced Optical Materials, 2020, 8, 1901679.	3.6	41
16	N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86%. Nano Energy, 2020, 68, 104363.	8.2	58
17	Unraveling the Crystallization Kinetics of 2D Perovskites with Sandwichâ€Type Structure for Highâ€Performance Photovoltaics. Advanced Materials, 2020, 32, e2002784.	11.1	52
18	Improving Efficiency and Stability of Perovskite Solar Cells Enabled by A Near-Infrared-Absorbing Moisture Barrier. Joule, 2020, 4, 1575-1593.	11.7	88

#	Article	IF	CITATIONS
19	Investigation on the role of amines in the liquefaction and recrystallization process of MAPbl ₃ perovskite. Journal of Materials Chemistry A, 2020, 8, 13585-13593.	5.2	11
20	Imide-functionalized acceptor–acceptor copolymers as efficient electron transport layers for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 13754-13762.	5.2	28
21	High Electron Affinity Enables Fast Hole Extraction for Efficient Flexible Inverted Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903487.	10.2	210
22	Supersmooth Ta ₂ O ₅ /Ag/Polyetherimide Film as the Rear Transparent Electrode for High Performance Semitransparent Perovskite Solar Cells. Advanced Optical Materials, 2019, 7, 1801409.	3.6	13
23	A general strategy to prepare high-quality inorganic charge-transporting layers for efficient and stable all-layer-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18603-18611.	5.2	31
24	Dopantâ€Free Smallâ€Molecule Holeâ€Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21%. Advanced Materials, 2019, 31, e1902781.	11.1	268
25	Dopantâ€Free Hole Transporting Molecules for Highly Efficient Perovskite Photovoltaic with Strong Interfacial Interaction. Solar Rrl, 2019, 3, 1900319.	3.1	20
26	A New Wide Bandgap Donor Polymer for Efficient Nonfullerene Organic Solar Cells with a Large Openâ€Circuit Voltage. Advanced Science, 2019, 6, 1901773.	5 . 6	61
27	A Tailored Nickel Oxide Holeâ€Transporting Layer to Improve the Longâ€Term Thermal Stability of Inorganic Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900346.	3.1	30
28	Efficient and Stable FASnI ₃ Perovskite Solar Cells with Effective Interface Modulation by Lowâ€Dimensional Perovskite Layer. ChemSusChem, 2019, 12, 5007-5014.	3.6	111
29	High Short-Circuit Current Density via Integrating the Perovskite and Ternary Organic Bulk Heterojunction. ACS Energy Letters, 2019, 4, 2535-2536.	8.8	47
30	A low-temperature-annealed and UV-ozone-enhanced combustion derived nickel oxide hole injection layer for flexible quantum dot light-emitting diodes. Nanoscale, 2019, 11, 1021-1028.	2.8	42
31	Novel Molecular Doping Mechanism for nâ€Doping of SnO ₂ via Triphenylphosphine Oxide and Its Effect on Perovskite Solar Cells. Advanced Materials, 2019, 31, e1805944.	11.1	152
32	Spontaneous Formation of Nanocrystals in Amorphous Matrix: Alternative Pathway to Bright Emission in Quasiâ€2D Perovskites. Advanced Optical Materials, 2019, 7, 1900269.	3 . 6	3
33	Hydrothermally Treated SnO ₂ as the Electron Transport Layer in Highâ€Efficiency Flexible Perovskite Solar Cells with a Certificated Efficiency of 17.3%. Advanced Functional Materials, 2019, 29, 1807604.	7.8	72
34	Conjugated Polymer–Assisted Grain Boundary Passivation for Efficient Inverted Planar Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1808855.	7.8	133
35	Alloy-induced phase transition and enhanced photovoltaic performance: the case of Cs ₃ Bi ₂ I _{9â^'x} Br _x perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 8818-8825.	5.2	87
36	Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803872.	10.2	236

#	Article	IF	CITATIONS
37	A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nature Communications, 2019, 10, 1161.	5.8	225
38	Multifunctional atomic force probes for Mn2+ doped perovskite solar cells. Journal of Power Sources, 2019, 425, 130-137.	4.0	11
39	Synergy Effect of Both 2,2,2â€Trifluoroethylamine Hydrochloride and SnF ₂ for Highly Stable FASnI _{3â°x} Cl _x Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800290.	3.1	45
40	Side-Chain Engineering of Donor–Acceptor Conjugated Small Molecules As Dopant-Free Hole-Transport Materials for Efficient Normal Planar Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48556-48563.	4.0	49
41	Eliminating J-V hysteresis in perovskite solar cells via defect controlling. Organic Electronics, 2018, 58, 283-289.	1.4	29
42	Inverted planar organic-inorganic hybrid perovskite solar cells with NiO x hole-transport layers as light-in window. Applied Surface Science, 2018, 451, 325-332.	3.1	15
43	Moleculeâ€Doped Nickel Oxide: Verified Charge Transfer and Planar Inverted Mixed Cation Perovskite Solar Cell. Advanced Materials, 2018, 30, e1800515.	11.1	287
44	Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber. Materials Today Energy, 2018, 8, 125-133.	2.5	121
45	Understanding the Doping Effect on NiO: Toward Highâ€Performance Inverted Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703519.	10.2	286
46	Promising ITO-free perovskite solar cells with WO ₃ –Ag–SnO ₂ as transparent conductive oxide. Journal of Materials Chemistry A, 2018, 6, 19330-19337.	5.2	27
47	Bifunctional Molecular Modification Improving Efficiency and Stability of Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800645.	1.9	43
48	The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells. Nanomaterials, 2018, 8, 356.	1.9	30
49	General Method To Define the Type of Carrier Transport Materials for Perovskite Solar Cells via Kelvin Probes Microscopy. ACS Applied Energy Materials, 2018, 1, 3984-3991.	2.5	15
50	Formamidiniumâ€Based Lead Halide Perovskites: Structure, Properties, and Fabrication Methodologies. Small Methods, 2018, 2, 1700387.	4.6	48
51	Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 591-598.	2.1	191
52	SrCl ₂ Derived Perovskite Facilitating a High Efficiency of 16% in Holeâ€Conductorâ€Free Fully Printable Mesoscopic Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606608.	11.1	135
53	Metal Acetylacetonate Series in Interface Engineering for Full Lowâ€Temperatureâ€Processed, Highâ€Performance, and Stable Planar Perovskite Solar Cells with Conversion Efficiency over 16% on 1 cm ² Scale. Advanced Materials, 2017, 29, 1603923.	11.1	190
54	Perovskite solar cells - An overview of critical issues. Progress in Quantum Electronics, 2017, 53, 1-37.	3.5	132

#	Article	IF	CITATIONS
55	Cesium Doped NiO <i>_x</i> as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700722.	10.2	353
56	Research progress on large-area perovskite thin films and solar modules. Journal of Materiomics, 2017, 3, 231-244.	2.8	75
57	Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by the Dual Effect of NaCl-Doped PEDOT:PSS. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43902-43909.	4.0	149
58	Synthesis of Lead-Free Perovskite Films by Combinatorial Evaporation: Fast Processes for Screening Different Precursor Combinations. Chemistry of Materials, 2017, 29, 9946-9953.	3.2	13
59	Ruthenium acetylacetonate in interface engineering for high performance planar hybrid perovskite solar cells. Optics Express, 2017, 25, A253.	1.7	16
60	Overcoming the Interface Losses in Planar Heterojunction Perovskiteâ€Based Solar Cells. Advanced Materials, 2016, 28, 5112-5120.	11,1	188
61	A Series of Pyreneâ€Substituted Silicon Phthalocyanines as Nearâ€IR Sensitizers in Organic Ternary Solar Cells. Advanced Energy Materials, 2016, 6, 1502355.	10.2	59
62	Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 4879-4883.	3.2	45
63	Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer. Materials Today Energy, 2016, 1-2, 1-10.	2.5	30
64	Perovskite solar cells with 18.21% efficiency andÂarea over 1 cm2 fabricated by heterojunctionÂengineering. Nature Energy, 2016, 1, .	19.8	555
65	Overcoming Electrodeâ€Induced Losses in Organic Solar Cells by Tailoring a Quasiâ€Ohmic Contact to Fullerenes via Solutionâ€Processed Alkali Hydroxide Layers. Advanced Energy Materials, 2016, 6, 1502195.	10.2	29
66	Highâ€Quality Mixedâ€Organicâ€Cation Perovskites from a Phaseâ€Pure Nonâ€stoichiometric Intermediate (FAI) \sub \sub \sin \frac{1}{3} \cdot \sub \sin \cdot \sub \sin \cdot \sub \sin \cdot \sin \sin \sin \sin \sin \sin \sin \sin	11.1	140
67	Inverted, Environmentally Stable Perovskite Solar Cell with a Novel Lowâ€Cost and Waterâ€Free PEDOT Holeâ€Extraction Layer. Advanced Energy Materials, 2015, 5, 1500543.	10.2	81
68	Lowâ€Temperature and Hysteresisâ€Free Electronâ€Transporting Layers for Efficient, Regular, and Planar Structure Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1501056.	10.2	69
69	Sub-bandgap photon harvesting for organic solar cells via integrating up-conversion nanophosphors. Organic Electronics, 2015, 19, 113-119.	1.4	13
70	Black Phosphorus Quantum Dots. Angewandte Chemie - International Edition, 2015, 54, 3653-3657.	7.2	594
71	Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350, 944-948.	6.0	2,007
72	Low-Temperature Solution-Processed Kesterite Solar Cell Based on in Situ Deposition of Ultrathin Absorber Layer. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21100-21106.	4.0	28

WEI CHEN

#	Article	IF	CITATION
73	Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy and Environmental Science, 2015, 8, 629-640.	15.6	285
74	Sequential Deposition of CH ₃ NH ₃ Pbl ₃ on Planar NiO Film for Efficient Planar Perovskite Solar Cells. ACS Photonics, 2014, 1, 547-553.	3.2	245
75	A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy and Environmental Science, 2014, 7, 2963-2967.	15.6	668
76	Boosting the Photocurrent Density of p-Type Solar Cells Based on Organometal Halide Perovskite-Sensitized Mesoporous NiO Photocathodes. ACS Applied Materials & Interfaces, 2014, 6, 12609-12617.	4.0	50
77	Morphology characterization in organic and hybrid solar cells. Energy and Environmental Science, 2012, 5, 8045.	15.6	379
78	Mesogen induced self-assembly for hybrid bulk heterojunction solar cells based on a liquid crystal D–A copolymer and ZnO nanocrystals. Journal of Materials Chemistry, 2012, 22, 6259.	6.7	25
79	Photovoltaic performance enhancement in P3HT/ZnO hybrid bulk-heterojunction solar cells induced by semiconducting liquid crystal ligands. Organic Electronics, 2012, 13, 2757-2762.	1.4	24
80	Ordered microstructure induced by orientation behavior of liquid-crystal polythiophene for performance improvement of hybrid solar cells. Solar Energy Materials and Solar Cells, 2012, 96, 266-275.	3.0	33
81	Enhancement of the ultraviolet emission of ZnO nanorods by terphenyl liquid-crystalline ligands modification. Applied Surface Science, 2011, 257, 8788-8793.	3.1	15