Fusheng Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4760961/publications.pdf

Version: 2024-02-01

293 papers

11,342 citations

28190 55 h-index 91 g-index

296 all docs

296 docs citations

times ranked

296

9151 citing authors

#	Article	IF	CITATIONS
1	Enhanced Electrochemical Performance of Poly(ethylene oxide) Composite Polymer Electrolyte via Incorporating Lithiated Covalent Organic Framework. Transactions of Tianjin University, 2022, 28, 67-72.	3.3	10
2	Deformation Characterization, Twinning Behavior and Mechanical Properties of Dissimilar Friction-Stir-Welded AM60/AZ31 Alloys Joint During the Three-Point Bending. Acta Metallurgica Sinica (English Letters), 2022, 35, 727-744.	1.5	8
3	Vapor-liquid interfacial polymerization of covalent organic framework membranes for efficient alcohol dehydration. Journal of Membrane Science, 2022, 641, 119905.	4.1	18
4	Highly permeable and antioxidative graphene oxide membranes for concentration of hydrogen peroxide aqueous solution. Journal of Membrane Science, 2022, 643, 120036.	4.1	8
5	Hybrid membranes with 2D vertical continuous channels from layered double hydroxides array for high-efficiency ethanol dehydration. Journal of Membrane Science, 2022, 643, 120040.	4.1	9
6	Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 32-48.	2.4	169
7	Ultrahigh plasticity Mg–Gd–Zr alloy. , 2022, , 83-118.		O
8	Effects of Zn Addition on the Microstructure and Mechanical Properties of As-Extruded Mg-2Al-0.5Ca Alloy. Metals, 2022, 12, 221.	1.0	6
9	Fast kinetics of monoclinic VO ₂ (B) bulk upon magnesiation <i>via</i> DFT+U calculations. Physical Chemistry Chemical Physics, 2022, 24, 2150-2157.	1.3	6
10	"Solid solution strengthening and ductilizing―theory for magnesium alloys. , 2022, , 47-82.		3
11	A review of the design, processes, and properties of Mg-based composites. Nanotechnology Reviews, 2022, 11, 712-730.	2.6	27
12	Facile and Economic Synthesis of Robust Non-Nucleophilic Electrolyte for High-Performance Rechargeable Magnesium Batteries. ACS Applied Materials & Emp; Interfaces, 2022, 14, 8906-8915.	4.0	18
13	N ₂ O as a Universal Reaction Gas to Overcome Spectral Interference in Determining Metal Impurities in Mg(TFSI) ₂ Electrolytes for Rechargeable Magnesium Batteries by Inductively Coupled Plasma Tandem Mass Spectrometry. Analytical Chemistry, 2022, 94, 3035-3040.	3.2	6
14	Functionalized 12µm Polyethylene Separator to Realize Dendriteâ€Free Lithium Deposition toward Highly Stable Lithiumâ€Metal Batteries. Advanced Science, 2022, 9, e2102215.	5.6	35
15	Effect on Zn on Microstructures and Mechanical Properties of Mg–Gd–Y–Zn LPSO Alloys. Metals and Materials International, 2022, 28, 2613-2620.	1.8	9
16	Ultrafast seawater desalination with covalent organic framework membranes. Nature Sustainability, 2022, 5, 518-526.	11.5	126
17	Covalent Organic Framework for Rechargeable Batteries: Mechanisms and Properties of Ionic Conduction. Advanced Energy Materials, 2022, 12, .	10.2	72
18	MOF–COF "Alloy―Membranes for Efficient Propylene/Propane Separation. Advanced Materials, 2022, 34, e2201423.	11.1	39

#	Article	IF	CITATIONS
19	Comparison on Hot Tearing Behavior of Binary Mg–Al, Mg–Y, Mg–Gd, Mg–Zn, and Mg–Ca Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 2986-3001.	1.1	7
20	Effects of Li addition on the microstructure and tensile properties of the extruded Mg-1Zn-xLi alloy. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1380-1387.	2.4	7
21	Improving the room-temperature bendability of Mg-3Al-1Zn alloy sheet by introducing a bimodal microstructure and the texture re-orientation. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1322-1333.	2.4	6
22	In-situ construction of water capture layer through reaction enhanced surface segregation for pervaporation desalination. Journal of Membrane Science, 2022, 658, 120708.	4.1	9
23	Synergistic Effect of a Facilely Synthesized MnV ₂ O ₆ Catalyst on Improving the Low-Temperature Kinetic Properties of MgH ₂ . ACS Applied Materials & Amp; Interfaces, 2022, 14, 33161-33172.	4.0	30
24	Preparing superhydrophobic nanocomposite coating with SiO ₂ nanoparticles on magnesium alloy. Surface Engineering, 2021, 37, 1231-1238.	1.1	12
25	Deformation Behavior of the Mg–Zn–Ca–Ce Alloy Sheets Subjected to Uniaxial and Biaxial Tensile Tests. Metals and Materials International, 2021, 27, 4322-4332.	1.8	3
26	Effect of Mn Modification on Microstructure and Mechanical Properties of Magnesium Alloy with Low Gd Content. Metals and Materials International, 2021, 27, 1483-1492.	1.8	14
27	Effect of Zener–Hollomon Parameter on High-Temperature Deformation Behaviors of Mg–6Zn–1.5Y–0.5Ce–0.4Zr Alloy. Acta Metallurgica Sinica (English Letters), 2021, 34, 606-616.	1.5	6
28	Vertically oriented Fe3O4 nanoflakes within hybrid membranes for efficient water/ethanol separation. Journal of Membrane Science, 2021, 620, 118916.	4.1	8
29	Construction of graphene oxide membrane through non-covalent cross-linking by sulfonated cyclodextrin for ultra-permeable butanol dehydration. Journal of Membrane Science, 2021, 621, 118938.	4.1	30
30	Optimized Tension for AZ31B Thin Sheets Rolled with On-Line Heating Rolling. Acta Metallurgica Sinica (English Letters), 2021, 34, 227-238.	1.5	4
31	Influence of Li Addition on the Microstructures and Mechanical Properties of Mg–Li Alloys. Metals and Materials International, 2021, 27, 1403-1415.	1.8	12
32	Temperature Effect on Strain Hardening Behaviors of Asâ€Extruded Binary Magnesium Alloys. Advanced Engineering Materials, 2021, 23, 2001104.	1.6	0
33	Effect of Mn Addition on Melt Purification and Fe Tolerance in Mg Alloys. Jom, 2021, 73, 892-902.	0.9	24
34	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	18.7	170
35	Boosting magnesium storage in MoS ₂ <i>via</i> a 1T phase introduction and interlayer expansion strategy: theoretical prediction and experimental verification. Sustainable Energy and Fuels, 2021, 5, 5471-5480.	2.5	4
36	Heterostructured graphene oxide membranes with tunable water-capture coatings for highly selective water permeation. Journal of Materials Chemistry A, 2021, 9, 7903-7912.	5.2	18

#	Article	IF	CITATIONS
37	Corrosion protection properties of different inhibitors containing PEO/LDHs composite coating on magnesium alloy AZ31. Scientific Reports, 2021, 11, 2774.	1.6	22
38	Solution to Multiscale and Multiphysics Problems: A Phaseâ€Field Study of Fully Coupled Thermalâ€Soluteâ€Convection Dendrite Growth. Advanced Theory and Simulations, 2021, 4, 2000251.	1.3	13
39	Ion Selective Covalent Organic Framework Enabling Enhanced Electrochemical Performance of Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 2997-3006.	4.5	102
40	Strategies for enhancing the room-temperature stretch formability of magnesium alloy sheets: a review. Journal of Materials Science, 2021, 56, 12965.	1.7	64
41	Improving Strength and Electromagnetic Shielding Effectiveness of Mg–Sn–Zn–Ca–Ce Alloy by Sn Addition. Advanced Engineering Materials, 2021, 23, 2100166.	1.6	15
42	The Effect of Sr Addition on Hot Tearing Susceptibility of Mg-1Ca-xSr Alloys. Journal of Materials Engineering and Performance, 2021, 30, 7645-7654.	1.2	8
43	Conferring efficient alcohol dehydration to covalent organic framework membranes via post-synthetic linker exchange. Journal of Membrane Science, 2021, 630, 119319.	4.1	30
44	Investigation on the Phase Relationship and Solidification Processes of Mg-rich Mg-Mn-Y Alloys. Journal of Phase Equilibria and Diffusion, 2021, 42, 441-451.	0.5	4
45	Enhanced water-selective performance of dual-layer hybrid membranes by incorporating carbon nanotubes. Chemical Engineering Science: X, 2021, 11, 100102.	1.5	4
46	Facile Preparation of CuCo ₂ S ₄ /Cu _{7.2} S ₄ Nanocomposites as Highâ€Performance Cathode Materials for Rechargeable Magnesium Batteries**. Chemistry - A European Journal, 2021, 27, 13568-13574.	1.7	10
47	Thermo-mechanical properties of Cr–Co–Ni alloys from longitudinal spin fluctuation theory. Applied Physics Letters, 2021, 119, 081904.	1.5	3
48	Corrosion of Iron-Nickel Foam to In Situ Fabricate Amorphous FeNi (Oxy)hydroxide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 8791-8800.	2.5	17
49	First-principles prediction of layered MoO ₂ and MoOSe as promising cathode materials for magnesium ion batteries. Nanotechnology, 2021, 32, 495405.	1.3	5
50	Graphene oxide membranes tuned by metal-phytic acid coordination complex for butanol dehydration. Journal of Membrane Science, 2021, 638, 119736.	4.1	16
51	Effect of Microstructure on Layered Double Hydroxides Film Growth on Mg-2Zn-xMn Alloy. Coatings, 2021, 11, 59.	1.2	8
52	Large strain hardening of magnesium containing <i>in situ</i> i> nanoparticles. Nanotechnology Reviews, 2021, 10, 1018-1030.	2.6	8
53	The high-temperature oxidation resistance properties of magnesium alloys alloyed with Gd and Ca. Journal of Materials Science, 2021, 56, 8745-8761.	1.7	20
54	Enhancing Mg ²⁺ and Mg ²⁺ /Li ⁺ Storage by Introducing Active Defect Sites and Edge Surfaces in MoSe ₂ . ChemElectroChem, 2021, 8, 4252-4260.	1.7	3

#	Article	IF	Citations
55	A Novel Mg–CaMgSn Master Alloy for Grain Refinement in Mg–Al-Based Alloys. Metals, 2021, 11, 1722.	1.0	3
56	Effects of Substitution of Y with Yb and Ce on the Microstructures and Mechanical Properties of Mg88.5Zn5Y6.5. Metals, 2021, 11, 31.	1.0	0
57	Water-selective hybrid membranes with improved interfacial compatibility from mussel-inspired dopamine-modified alginate and covalent organic frameworks. Chinese Journal of Chemical Engineering, 2020, 28, 90-97.	1.7	10
58	Graphene oxide membranes with fixed interlayer distance via dual crosslinkers for efficient liquid molecular separations. Journal of Membrane Science, 2020, 595, 117486.	4.1	47
59	Improving Strength and Formability of Rolled AZ31 Sheet by Two-Step Twinning Deformation. Jom, 2020, 72, 2551-2560.	0.9	13
60	Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15. Frontiers of Chemical Science and Engineering, 2020, 14, 661-672.	2.3	7
61	A MOF Glass Membrane for Gas Separation. Angewandte Chemie - International Edition, 2020, 59, 4365-4369.	7.2	325
62	Facilitated transport membranes by incorporating self-exfoliated covalent organic nanosheets for CO2/CH4 separation. Separation and Purification Technology, 2020, 237, 116457.	3.9	20
63	Reducing active layer thickness of polyamide composite membranes using a covalent organic framework interlayer in interfacial polymerization. Chinese Journal of Chemical Engineering, 2020, 28, 1039-1045.	1.7	25
64	A new environmentally-friendly route to <i>in situ</i> form a high-corrosion-resistant nesquehonite film on pure magnesium. RSC Advances, 2020, 10, 35480-35489.	1.7	9
65	Achieving High Yield Strength and Ductility in As-Extruded Mg-0.5Sr Alloy by High Mn–Alloying. Materials, 2020, 13, 4176.	1.3	7
66	Polydopamine coated poly(m-phenylene isophthalamid) membrane as heat-tolerant separator for lithium-ion batteries. Ionics, 2020, 26, 5471-5480.	1.2	8
67	Metal–Organic Frameworks Corset with a Thermosetting Polymer for Improved Molecular-Sieving Property of Mixed-Matrix Membranes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55308-55315.	4.0	19
68	Influence of Electrolyte Temperature on Morphology and Properties of Composite Anodic Film on Titanium Alloy Ti-10V-2Fe-3Al. Coatings, 2020, 10, 1109.	1.2	5
69	Constructing Colorful Surfaces with Mechanical Robustness for Magnesium Alloys via a Reagent-Free Method. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48206-48215.	4.0	8
70	Improved Edge Quality for AZ31 Sheets Using Online Heating Rolling Technique. Journal of Materials Engineering and Performance, 2020, 29, 4212-4221.	1.2	5
71	Ultrathin heterostructured covalent organic framework membranes with interfacial molecular sieving capacity for fast water-selective permeation. Journal of Materials Chemistry A, 2020, 8, 19328-19336.	5.2	43
72	Effects of annealing temperature on microstructure and mechanical properties of LZ91 alloy. Materials Science and Technology, 2020, 36, 2010-2017.	0.8	10

#	Article	IF	CITATIONS
73	Constructing high-efficiency facilitated transport pathways via embedding heterostructured $Ag+@MOF/GO$ laminates into membranes for pervaporative desulfurization. Separation and Purification Technology, 2020, 245, 116858.	3.9	16
74	Density Functional Theory Calculations for the Evaluation of FePS3 as a Promising Anode for Mg Ion Batteries. Transactions of Tianjin University, 2020, 26, 248-255.	3.3	14
75	Nano-silica-decorated Poly(m-Phenylene Isophthalamide) Separator with Enhanced Mechanical and Electrolyte Wetting Properties for Lithium-Ion Batteries. Transactions of Tianjin University, 2020, 26, 256-264.	3.3	8
76	Effect of Steels on the Purity of Molten Mg Alloys. Advanced Engineering Materials, 2020, 22, 2000338.	1.6	18
77	Achieving High Ductility in Hot-Rolled Mg-xZn-0.2Ca-0.2Ce Sheet by Zn Addition. Jom, 2020, 72, 1607-1618.	0.9	8
78	A MOF Glass Membrane for Gas Separation. Angewandte Chemie, 2020, 132, 4395-4399.	1.6	57
79	Microstructure Evolution and Mechanical Properties of Mg-1.5Zn-0.2Ca-0.2Ce Alloy Processed by Accumulated Extrusion Bonding. Jom, 2020, 72, 2597-2602.	0.9	12
80	Lithiation of covalent organic framework nanosheets facilitating lithium-ion transport in lithium-sulfur batteries. Energy Storage Materials, 2020, 29, 207-215.	9.5	93
81	General hierarchical structure to solve transport phenomena with dissimilar time scales: Application in large-scale three-dimensional thermosolutal phase-field problems. Physical Review E, 2020, 102, 043313.	0.8	8
82	Effects of Gd on the microstructure and mechanical properties of Mg–Li dual-phase alloys. International Journal of Materials Research, 2020, 111, 432-438.	0.1	0
83	Microstructure and mechanical properties of rolled Mg–Gd–Zn–Zr–Ag–Al–Li alloys. International Journal of Materials Research, 2020, 111, 645-653.	0.1	2
84	Hybrid membranes with Cu(II) loaded metal organic frameworks for enhanced desulfurization performance. Separation and Purification Technology, 2019, 210, 258-267.	3.9	31
85	Effect of Compressive Deformation on Wear Property of Extruded ZK60 Magnesium Alloy. Tribology Transactions, 2019, 62, 1-7.	1.1	13
86	Elevated Pervaporative Desulfurization Performance of Pebax-Ag ⁺ @MOFs Hybrid Membranes by Integrating Multiple Transport Mechanisms. Industrial & Description Chemistry Research, 2019, 58, 16911-16921.	1.8	15
87	Brønsted acid mediated covalent organic framework membranes for efficient molecular separation. Journal of Materials Chemistry A, 2019, 7, 20317-20324.	5.2	58
88	Effect of Heat Treatment on Microstructure and Mechanical Properties of Extruded Mg-4Zn-1.5Al-2Sn Alloy. Journal of Materials Engineering and Performance, 2019, 28, 4565-4573.	1.2	0
89	Effect of Sn Addition on Microstructure and Corrosion Behavior of As-Extruded Mg–5Zn–4Al Alloy. Materials, 2019, 12, 2069.	1.3	14
90	Modification of Supramolecular Membranes with 3D Hydrophilic Slide-Rings for the Improvement of Antifouling Properties and Effective Separation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28527-28537.	4.0	25

#	Article	IF	Citations
91	Ultrapermeable graphene oxide membranes with tunable interlayer distances (i>via (li>vein-like supramolecular dendrimers. Journal of Materials Chemistry A, 2019, 7, 18642-18652.	5.2	48
92	Tailoring the facets of Ni ₃ S ₂ as a bifunctional electrocatalyst for high-performance overall water-splitting. Journal of Materials Chemistry A, 2019, 7, 18003-18011.	5.2	83
93	Effect of Zn Content on the Microstructure and Mechanical Properties of Mg–Al–Sn–Mn Alloys. Materials, 2019, 12, 3102.	1.3	5
94	Corrosion and Residual Strength Analysis of High Pressure Die Casting AM Series Mg Alloys. Materials, 2019, 12, 2624.	1.3	5
95	Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation. Separation and Purification Technology, 2019, 215, 582-589.	3.9	95
96	PolyCOFs: A New Class of Freestanding Responsive Covalent Organic Framework Membranes with High Mechanical Performance. ACS Central Science, 2019, 5, 1352-1359.	5.3	126
97	Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nature Communications, 2019, 10, 2101.	5.8	271
98	Bioinspired EVAL membrane modified with cilia-like structures showing simultaneously enhanced permeability and antifouling properties. Colloids and Surfaces B: Biointerfaces, 2019, 181, 134-142.	2.5	6
99	Effect of Boron on the Grain Refinement and Mechanical Properties of as-Cast Mg Alloy AM50. Materials, 2019, 12, 1100.	1.3	7
100	Microstructure and Mechanical Properties of Aged and Hot Rolled AZ80 Magnesium Alloy Sheets. Crystals, 2019, 9, 239.	1.0	3
101	Constructing channel-mediated facilitated transport membranes by incorporating covalent organic framework nanosheets with tunable microenvironments. Journal of Materials Chemistry A, 2019, 7, 9912-9923.	5.2	25
102	Mass transport mechanisms within pervaporation membranes. Frontiers of Chemical Science and Engineering, 2019, 13, 458-474.	2.3	27
103	Tailoring the Rolling Texture of AZ31 Mg Alloy with Calcium and Tin Addition. Advanced Engineering Materials, 2019, 21, 1800920.	1.6	8
104	Strain Hardening Behavior in Mg–Al Alloys at Room Temperature. Advanced Engineering Materials, 2019, 21, 1801062.	1.6	14
105	Hollow monocrystalline silicaliteâ€1 hybrid membranes for efficient pervaporative desulfurization. AICHE Journal, 2019, 65, 196-206.	1.8	12
106	A Graphene Spin Coatings for Cost-Effective Corrosion Protection for the Magnesium Alloy AZ31. Journal of Nanoscience and Nanotechnology, 2019, 19, 105-111.	0.9	7
107	High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. Journal of Membrane Science, 2019, 572, 557-566.	4.1	48
108	Tribological performances of SiO2/graphene combinations as water-based lubricant additives for magnesium alloy rolling. Applied Surface Science, 2019, 475, 847-856.	3.1	94

#	Article	IF	Citations
109	Layer-by-layer self-assembled nanocomposite membranes via bio-inspired mineralization for pervaporation dehydration. Journal of Membrane Science, 2019, 570-571, 44-52.	4.1	22
110	Constructing rapid diffusion pathways in ultrapermeable hybrid membranes by hierarchical porous nanotubes. Chemical Engineering Science, 2019, 195, 609-618.	1.9	11
111	Effect of manganese on the microstructure andÂmechanical properties of magnesium alloys. International Journal of Materials Research, 2019, 110, 1016-1024.	0.1	9
112	Hot Deformation Behavior and Microstructural Evolution of Twin-Roll-Casting Mg Alloy during High-Temperature Compression. Advances in Materials Science and Engineering, 2019, 2019, 1-7.	1.0	207
113	First Principle and Experimental Study for Site Preferences of Formability Improved Alloying Elements in Mg Crystal. Metals and Materials International, 2018, 24, 830-839.	1.8	3
114	Embedding hydrophobic MoS 2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chemical Engineering Science, 2018, 185, 231-242.	1.9	35
115	Mechanical properties and failure behavior of AZ61 magnesium alloy at high temperatures. Journal of Materials Science, 2018, 53, 8536-8544.	1.7	8
116	Embedding Ag $+$ @COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. Journal of Membrane Science, 2018, 552, 1-12.	4.1	61
117	Effect of secondary phase on the electromagnetic shielding effectiveness of magnesium alloy. Scientific Reports, 2018, 8, 1625.	1.6	33
118	Enhanced dehydration performance of hybrid membranes by incorporating fillers with hydrophilic-hydrophobic regions. Chemical Engineering Science, 2018, 178, 273-283.	1.9	13
119	Manipulation of interactions at membrane interfaces for energy and environmental applications. Progress in Polymer Science, 2018, 80, 125-152.	11.8	56
120	Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. Journal of Membrane Science, 2018, 555, 146-156.	4.1	57
121	O-Vacancy-enriched NiO hexagonal platelets fabricated on Ni foam as a self-supported electrode for extraordinary pseudocapacitance. Journal of Materials Chemistry A, 2018, 6, 7099-7106.	5.2	61
122	Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets. Journal of Membrane Science, 2018, 545, 29-37.	4.1	42
123	Bimetallic metal-organic frameworks nanocages as multi-functional fillers for water-selective membranes. Journal of Membrane Science, 2018, 545, 19-28.	4.1	44
124	Enhanced dehydration performance of hybrid membranes by incorporating lanthanide-based MOFs. Journal of Membrane Science, 2018, 546, 31-40.	4.1	26
125	Elevated performance of hybrid membranes by incorporating metal organic framework CuBTC for pervaporative desulfurization of gasoline. Chemical Engineering and Processing: Process Intensification, 2018, 123, 12-19.	1.8	24
126	Effect of Bi on Microstructure and Mechanical Properties of Extruded AZ80-2Sn Magnesium Alloy. High Temperature Materials and Processes, 2018, 37, 97-103.	0.6	3

#	Article	IF	CITATIONS
127	Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. Journal of Materials Chemistry A, 2018, 6, 583-591.	5.2	103
128	Thermal conductivity and mechanical properties of Sm-containing Mg-Zn-Zr alloys. Materials Science and Technology, 2018, 34, 138-144.	0.8	13
129	Microstructure and Mechanical Properties of Mg–6Al–1Sn–0.3Mn Alloy Sheet Fabricated through Extrusion Combined with Rolling. Crystals, 2018, 8, 356.	1.0	6
130	Microstructures and Mechanical Properties of Mg-9Al/Ti Metallurgical Bonding Prepared by Liquid-Solid Diffusion Couples. Metals, 2018, 8, 778.	1.0	4
131	Strengthening Effects of Zn Addition on an Ultrahigh Ductility Mg-Gd-Zr Magnesium Alloy. Materials, 2018, 11, 1942.	1.3	26
132	Preparation and Characterization of Magnesium Alloy Containing Al2Y Particles. Materials, 2018, 11, 1748.	1.3	15
133	Hierarchical pore architectures from 2D covalent organic nanosheets for efficient water/alcohol separation. Journal of Membrane Science, 2018, 561, 79-88.	4.1	33
134	Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration. Journal of Membrane Science, 2018, 563, 903-913.	4.1	55
135	Tribological Behaviors of Graphene and Graphene Oxide as Water-Based Lubricant Additives for Magnesium Alloy/Steel Contacts. Materials, 2018, 11, 206.	1.3	61
136	Influence of pH on the growth behaviour of Mg–Al LDH films. Surface Engineering, 2018, 34, 674-681.	1.1	39
137	Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. Journal of Membrane Science, 2018, 565, 331-341.	4.1	73
138	Microstructure and Electromagnetic Shielding Properties of Mg-Zn-Ce-Y-Zr Alloys. Journal of Materials Engineering and Performance, 2018, 27, 4722-4731.	1.2	8
139	Composition Optimization and Mechanical Properties of Mg-Al-Sn-Mn Alloys by Orthogonal Design. Materials, 2018, 11, 1424.	1.3	13
140	Robust Rareâ€Earthâ€Containing Superhydrophobic Coatings for Strong Protection of Magnesium and Aluminum Alloys. Advanced Materials Interfaces, 2018, 5, 1800213.	1.9	12
141	Heat-affected zone microstructure and mechanical properties evolution for laser remanufacturing 35CrMoA axle steel. , 2018, , .		0
142	Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys. Materials Science and Engineering C, 2017, 70, 1081-1088.	3.8	75
143	Enhanced desulfurization performance and stability of Pebax membrane by incorporating Cu+ and Fe2+ ions co-impregnated carbon nitride. Journal of Membrane Science, 2017, 526, 94-105.	4.1	38
144	A Novel Approach to Fabricate Protective Layered Double Hydroxide Films on the Surface of Anodized Mgâ€Al Alloy. Advanced Materials Interfaces, 2017, 4, 1700163.	1.9	89

#	Article	IF	CITATIONS
145	Preparation of ultrathin, robust membranes through reactive layer-by-layer (LbL) assembly for pervaporation dehydration. Journal of Membrane Science, 2017, 537, 229-238.	4.1	87
146	Effects of Sm addition on electromagnetic interference shielding property of Mg–Zn–Zr alloys. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	14
147	Black composites photocatalyst coatings of K 2 Ti 6 O 13 -TiO 2 /TiC with nano-sheet flower-like structure by heat treatment in molten salt. Materials Letters, 2017, 188, 55-58.	1.3	8
148	Construction of molecule-selective mixed matrix membranes with confined mass transfer structure. Chinese Journal of Chemical Engineering, 2017, 25, 1563-1580.	1.7	27
149	Nanocomposite membranes based on alginate matrix and high loading of pegylated POSS for pervaporation dehydration. Journal of Membrane Science, 2017, 538, 86-95.	4.1	42
150	Formation of a hydrophobic and corrosion resistant coating on magnesium alloy via a one-step hydrothermal method. Journal of Colloid and Interface Science, 2017, 505, 87-95.	5.0	44
151	A facile green synthesis of Sm2O3 nanoparticles via microwave-assisted urea precipitation route and their optical properties. Electronic Materials Letters, 2017, 13, 255-259.	1.0	10
152	Stress-Relaxation Behavior of Magnesium-3Gadolinium-2Calcium-Based Alloys at Elevated Temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5710-5716.	1.1	10
153	Hybrid membranes for pervaporation separations. Journal of Membrane Science, 2017, 541, 329-346.	4.1	174
154	Grain Coarsening of Cast Magnesium Alloys at High Cooling Rate: A New Observation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 474-481.	1.1	32
155	Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. Journal of Membrane Science, 2017, 523, 185-196.	4.1	176
156	Effects of rotation rate on microstructure and mechanical properties of friction stir-welded Mg-5Al-1Sn magnesium alloy. International Journal of Advanced Manufacturing Technology, 2017, 91, 389-397.	1.5	15
157	Statistical Analysis on the Mechanical Properties of Magnesium Alloys. Materials, 2017, 10, 1271.	1.3	25
158	Synergistic Effect of MoS2 and SiO2 Nanoparticles as Lubricant Additives for Magnesium Alloy–Steel Contacts. Nanomaterials, 2017, 7, 154.	1.9	22
159	Heat-affected zone microstructure and mechanical properties evolution for laser remanufacturing LZ50 axle steel., 2017, , .		0
160	A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys. Journal of Materials Science and Technology, 2016, 32, 1211-1221.	5.6	400
161	Development of high-strength, low-cost wrought Mg–2.0 mass% Zn alloy with high Mn content. Progress in Natural Science: Materials International, 2016, 26, 630-635.	1.8	31
162	Metal powder–pure water system for rational synthesis of metal oxide functional nanomaterials: a general, facile and green synthetic approach. RSC Advances, 2016, 6, 34507-34513.	1.7	6

#	Article	IF	CITATIONS
163	A novel approach to melt purification of magnesium alloys. Journal of Magnesium and Alloys, 2016, 4, 8-14.	5.5	54
164	Enhancing Thermal Conductivity of Mg-Sn Alloy Sheet by Cold Rolling and Aging. Journal of Materials Engineering and Performance, 2016, 25, 2356-2363.	1.2	8
165	Enhanced pervaporative performance of hybrid membrane by incorporating amphiphilic carbonaceous material. Journal of Membrane Science, 2016, 520, 951-963.	4.1	11
166	A new high-strength Mg-Zn-Ce-Y-Zr magnesium alloy. Journal of Alloys and Compounds, 2016, 688, 537-541.	2.8	52
167	Elevating the selectivity of layer-by-layer membranes by in situ bioinspired mineralization. Journal of Membrane Science, 2016, 520, 364-373.	4.1	32
168	Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. Journal of Membrane Science, 2016, 520, 583-595.	4.1	107
169	Intelligent sponge with reversibly tunable super-wettability: robust for effective oil–water separation as both the absorber and filter tolerate fouling and harsh environments. Journal of Materials Chemistry A, 2016, 4, 12334-12340.	5.2	46
170	An Investigation on the Tribological Performances of the SiO2/MoS2 Hybrid Nanofluids for Magnesium Alloy-Steel Contacts. Nanoscale Research Letters, 2016, 11, 329.	3.1	99
171	Influence of carbon atmosphere on surface morphology and photocatalytic activity of TiO2 coatings by multi-heat treatment. Journal of Materials Science: Materials in Electronics, 2016, 27, 3873-3879.	1.1	3
172	Highly swelling resistant membranes for model gasoline desulfurization. Journal of Membrane Science, 2016, 514, 440-449.	4.1	27
173	Pervaporation dehydration of an acetone/water mixture by hybrid membranes incorporated with sulfonated carbon molecular sieves. RSC Advances, 2016, 6, 55272-55281.	1.7	14
174	Strength improvement in ZK60 magnesium alloy induced by pre-deformation and heat treatment. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 393-398.	0.4	13
175	Influence of heat treatment process on photocatalytic activity of photocatalyst TiO2/TiCxOy coatings during heat treatment in carbon powder. Journal of Materials Science: Materials in Electronics, 2016, 27, 10399-10404.	1.1	5
176	Fabrication of Chitosan Membranes with High Flux by Magnetic Alignment of In Situ Generated Fe ₃ O ₄ . Chemical Engineering and Technology, 2016, 39, 969-978.	0.9	10
177	Incorporating Zwitterionic Graphene Oxides into Sodium Alginate Membrane for Efficient Water/Alcohol Separation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2097-2103.	4.0	113
178	Interfacial reaction in (Mg-37.5Al)/(Mg-6.7Nd) diffusion couples. Metals and Materials International, 2016, 22, 1-6.	1.8	9
179	Effect of Cu/Zn on microstructure and mechanical properties of extruded Mg–Sn alloys. Materials Science and Technology, 2016, 32, 1240-1248.	0.8	11
180	Effects of combined additions of SiO2 and MoS2 nanoparticles as lubricant additive on the tribological properties of AZ31 magnesium alloy. Science China Technological Sciences, 2016, 59, 689-698.	2.0	11

#	Article	IF	Citations
181	Enhancing the permeation selectivity of sodium alginate membrane by incorporating attapulgite nanorods for ethanol dehydration. RSC Advances, 2016, 6, 14381-14392.	1.7	38
182	Fabrication of oxygen-deficient TiO 2 coatings with nano-fiber morphology for visible-light photocatalysis. Materials Science in Semiconductor Processing, 2016, 41, 358-363.	1.9	33
183	Mechanical properties and internal friction of Mg–Zn–Y alloys with a long-period stacking ordered structure at different Y/Zn atomic ratios. Journal of Materials Research, 2015, 30, 3354-3362.	1.2	6
184	Effects of Heat Treatment on the Morphology of Long-Period Stacking Ordered Phase and the Corresponding Damping Capacities of Mg-Cu-Mn-Zn-Y Alloys. Materials Transactions, 2015, 56, 2042-2046.	0.4	1
185	Diffusion Kinetics in Mg-Cu Binary System. Journal of Phase Equilibria and Diffusion, 2015, 36, 613-619.	0.5	39
186	Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg–Sn implant alloys prepared by sub-rapid solidification. Materials Science and Engineering C, 2015, 54, 245-251.	3.8	66
187	Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers. Journal of Membrane Science, 2015, 492, 230-241.	4.1	50
188	Effects of Yttrium Addition on Microstructure and Mechanical Properties of AZ80–2Sn Magnesium Alloys. High Temperature Materials and Processes, 2015, 34, .	0.6	5
189	The Effects of Pre-strain and Subsequent Annealing on the Yielding Behavior in a Rolled Magnesium Alloy AZ31. Journal of Materials Engineering and Performance, 2015, 24, 16-23.	1.2	7
190	Enhanced pervaporation performance of MIL-101 (Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline. Chemical Engineering Science, 2015, 135, 479-488.	1.9	70
191	Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC. Journal of Membrane Science, 2015, 481, 73-81.	4.1	56
192	Hydrothermal synthesis and growth mechanisms of different ZnO nanostructures and their gas-sensing properties. Journal of Materials Science: Materials in Electronics, 2015, 26, 1347-1353.	1.1	17
193	A one-step, cost-effective green method to in situ fabricate Ni(OH) < sub > 2 < /sub > hexagonal platelets on Ni foam as binder-free supercapacitor electrode materials. Journal of Materials Chemistry A, 2015, 3, 1953-1960.	5.2	179
194	Preparation of a highly water-selective membrane for dehydration of acetone by incorporating potassium montmorillonite to construct ionized water channel. Chemical Engineering Science, 2015, 135, 461-471.	1.9	24
195	Robust Biomimetic-Structural Superhydrophobic Surface on Aluminum Alloy. ACS Applied Materials & Lamp; Interfaces, 2015, 7, 1449-1457.	4.0	110
196	Synthesis and characterization of novel chrysanthemum-like tungsten disulfide (WS2) nanostructure: structure, growth and optical absorption property. Journal of Materials Science: Materials in Electronics, 2015, 26, 809-814.	1.1	7
197	Polydimethyl siloxane–graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance. Journal of Membrane Science, 2015, 487, 152-161.	4.1	65
198	Characterization, growth mechanism and gas sensing properties for ZnO microflowers with mesoporous nanosheets. Journal of Materials Science: Materials in Electronics, 2015, 26, 191-195.	1.1	7

#	Article	IF	CITATIONS
199	Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. Journal of Membrane Science, 2015, 490, 72-83.	4.1	194
200	Development of magnesium-graphene nanoplatelets composite. Journal of Composite Materials, 2015, 49, 285-293.	1.2	121
201	Effects of Nd addition on microstructure and mechanical properties of Mg–6Zn–1Mn–4Sn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 634, 5-13.	2.6	31
202	Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions. Journal of Membrane Science, 2015, 487, 162-172.	4.1	128
203	Experimental and theoretical investigations of Michelia alba leaves extract as a green highly-effective corrosion inhibitor for different steel materials in acidic solution. RSC Advances, 2015, 5, 93724-93732.	1.7	16
204	Manipulating the interfacial interactions of composite membranes via a mussel-inspired approach for enhanced separation selectivity. Journal of Materials Chemistry A, 2015, 3, 19980-19988.	5.2	76
205	Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg–Zn–Y–Zr alloys. Materials & Design, 2015, 65, 360-369.	5.1	91
206	Facilitated transport of small molecules and ions for energy-efficient membranes. Chemical Society Reviews, 2015, 44, 103-118.	18.7	211
207	The precipitation behavior of a pretwinned Mg–6Al–1Zn alloy and the effect on subsequent deformation. Journal of Materials Research, 2014, 29, 2141-2146.	1.2	19
208	Microstructure and mechanical properties of Mg-Zn-Mn-Sn-Nd wrought alloys. Journal of Rare Earths, 2014, 32, 52-56.	2.5	14
209	Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes. Carbohydrate Polymers, 2014, 99, 158-165.	5.1	45
210	Effect of different structures on the gas sensing property of ZnO. Journal of Materials Science: Materials in Electronics, 2014, 25, 376-381.	1.1	8
211	Thermal and electrical conductivity of binary magnesium alloys. Journal of Materials Science, 2014, 49, 3107-3124.	1.7	114
212	Synthesis and characterization of flower-like WS2 nanospheres via a facile hydrothermal route. Journal of Materials Science: Materials in Electronics, 2014, 25, 4300-4305.	1.1	22
213	Efficient CO2 capture by humidified polymer electrolyte membranes with tunable water state. Energy and Environmental Science, 2014, 7, 1489.	15.6	119
214	High Pervaporation Dehydration Performance of the Composite Membrane with an Ultrathin Alginate/Poly(acrylic acid)–Fe ₃ O ₄ Active Layer. Industrial & Description of the Composite Membrane with an Ultrathin Alginate/Poly(acrylic acid)–Fe ₃ O ₄ Active Layer. Industrial & Description of the Composite Membrane with an Ultrathin Alginate Poly(acrylic acid)â6.	1.8	48
215	Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides. Journal of Membrane Science, 2014, 469, 272-283.	4.1	210
216	Creation of hierarchical structures within membranes by incorporating mesoporous microcapsules for enhanced separation performance and stability. Journal of Materials Chemistry A, 2014, 2, 5267.	5.2	26

#	Article	IF	Citations
217	Analysis of pH-dependent Structure and Mass Transfer Characteristics of Polydopamine Membranes by Molecular Dynamics Simulation. Chinese Journal of Chemical Engineering, 2014, 22, 1092-1097.	1.7	O
218	Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 2014, 39, 1668-1720.	11.8	174
219	Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles. Journal of Materials Chemistry A, 2014, 2, 12907.	5.2	35
220	Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A, 2013, 1, 10058.	5.2	252
221	An investigation of second phases in as-cast AZ31 magnesium alloys with different Sr contents. Journal of Materials Science, 2013, 48, 5456-5469.	1.7	14
222	Correlation on the Electrical and Thermal Conductivity for Binary Mg–Al and Mg–Zn Alloys. International Journal of Thermophysics, 2013, 34, 1336-1346.	1.0	46
223	Tensile and Compressive Properties of Mg-3Al-2Zn-2Y Alloy at Different Strain Rates. Journal of Materials Engineering and Performance, 2013, 22, 2681-2690.	1.2	8
224	High performance composite membranes with a polycarbophil calcium transition layer for pervaporation dehydration of ethanol. Journal of Membrane Science, 2013, 429, 409-417.	4.1	40
225	Enhanced pervaporation dehydration performance of ultrathin hybrid membrane by incorporating bioinspired multifunctional modifier and TiCl4 into chitosan. Journal of Membrane Science, 2013, 446, 395-404.	4.1	47
226	Improved mechanical properties in AZ31 magnesium alloys induced by impurity reduction. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 1207-1211.	0.4	6
227	High-conductivity binary Mg–Zn sheet processed by cold rolling and subsequent aging. Journal of Alloys and Compounds, 2013, 578, 493-500.	2.8	54
228	Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance. Journal of Materials Chemistry A, 2013, 1, 3713.	5.2	90
229	A study of the residual stress and its influence on tensile behaviors of fiber-reinforced SiC/Al composite. Advanced Composite Materials, 2013, 22, 255-263.	1.0	6
230	Fabrication of Ultrathin Membrane via Layer-by-Layer Self-assembly Driven by Hydrophobic Interaction Towards High Separation Performance. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13275-13283.	4.0	96
231	The effect of addition of cerium on the grain refinement of Mg–3Al–1Zn cast alloy. Journal of Materials Research, 2013, 28, 2694-2700.	1.2	9
232	Mechanical properties and anisotropy of AZ31 alloy sheet processed by flat extrusion container. Journal of Materials Research, 2013, 28, 1148-1154.	1.2	13
233	Microstructure and Deformation Behavior of Mg-Zn-Al-Re Magnesium Alloy. , 2012, , 421-426.		0
234	A study of the microstructure, phase composition, and mechanical properties of extruded Mg–9Er–6Y–xZn–0.6Zr magnesium alloys. Journal of Materials Science, 2012, 47, 6716-6723.	1.7	6

#	Article	IF	CITATIONS
235	Microstructure, tensile and creep properties of as-cast Mg-3.8Zn-2.2Ca-xCe (x=0, 0.5, 1 and 2 wt.%) magnesium alloys. Journal of Rare Earths, 2012, 30, 181-188.	2.5	18
236	Enhanced anti-swelling property and dehumidification performance by sodium alginate–poly(vinyl) Tj ETQq0 0 0) rgBT /Ov 4.1	erlock 10 Tf 47
237	Effects of Minor Zr and Sr on As-Cast Microstructure and Mechanical Properties of Mg-4Y-1.2Mn-1Zn (wt.%) Magnesium Alloy. Journal of Materials Engineering and Performance, 2012, 21, 47-54.	1.2	2
238	Effect of impurity reduction on rollability of AZ31 magnesium alloy. Journal of Materials Science, 2012, 47, 514-520.	1.7	13
239	Influence of Y on the phase composition and mechanical properties of as-extruded Mg–Zn–Y–Zr magnesium alloys. Journal of Materials Science, 2012, 47, 2005-2010.	1.7	37
240	Experimental and molecular simulation investigations on interfacial characteristics of gelatin/polyacrylonitrile composite pervaporation membrane. Chemical Engineering Journal, 2011, 178, 1-7.	6.6	24
241	Comparison about as-cast microstructures and mechanical properties of Mg–4Y–1.2Mn–0.9Sc and Mg–4Y–1.2Mn–1Zn (wt%) magnesium alloys. Journal of Materials Science, 2011, 46, 3094-3100.	1.7	3
242	Effects of minor Zr and Sr on as-cast microstructure and mechanical properties of Mg–3Ce–1.2Mn–1Zn (wt%) magnesium alloy. Journal of Materials Science, 2011, 46, 3216-3224.	1.7	6
243	Sodium alginate–gelatin polyelectrolyte complex membranes with both high water vapor permeance and high permselectivity. Journal of Membrane Science, 2011, 375, 304-312.	4.1	86
244	Comparison of effects of cerium, yttrium and gadolinium additions on as-cast microstructure and mechanical properties of Mg-3Sn-1Mn magnesium alloy. Journal of Rare Earths, 2011, 29, 550-557.	2.5	20
245	Effect of heat treatment on strain hardening of ZK60 Mg alloy. Materials & Design, 2011, 32, 1526-1530.	5.1	103
246	Effects of Minor Sr on As-Cast Microstructure and Mechanical Properties of ZA84 Magnesium Alloy. Journal of Materials Engineering and Performance, 2010, 19, 1043-1050.	1.2	12
247	Bio-inspired fabrication of composite membranes with ultrathin polymer–silica nanohybrid skin layer. Journal of Membrane Science, 2010, 362, 119-126.	4.1	27
248	Facile approach to polymer–inorganic nanocomposite membrane through a biomineralization-inspired process. Journal of Membrane Science, 2010, 357, 171-177.	4.1	47
249	Preparation and dehumidification performance of composite membrane with PVA/gelatin–silica hybrid skin layer. Journal of Membrane Science, 2010, 363, 316-325.	4.1	38
250	Effect of neodymium on the as-extruded ZK20 magnesium alloy. Journal of Rare Earths, 2010, 28, 631-635.	2.5	14
251	The synthesis and hydrogen storage properties of Mg ₂ Ni substituted with Cu, Co. Journal of Materials Research, 2009, 24, 1311-1316.	1.2	12
252	Mechanochemical synthesis of a Mg-Li-Al-H complex hydride. Journal of Materials Research, 2009, 24, 2880-2885.	1.2	7

#	Article	IF	Citations
253	Comparison about effects of Ce, Sn and Gd additions on as-cast microstructure and mechanical properties of Mg–3.8Zn–2.2Ca (wt%) magnesium alloy. Journal of Materials Science, 2009, 44, 4577-4586.	1.7	34
254	An improved neural network model for prediction of mechanical properties of magnesium alloys. Science in China Series D: Earth Sciences, 2009, 52, 155-160.	0.9	5
255	Thermal-stress simulation of direct-chill casting of AZ31 magnesium alloy billets. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 376-382.	0.4	8
256	Processing Effects on Grain Refinement of AZ31 Magnesium Alloy Treated with a Commercial Al-10Sr Master Alloy. Journal of Materials Engineering and Performance, 2009, 18, 32-37.	1.2	7
257	Thermodynamic Assessment of the Cu-B System Supported by Key Experiment and First-Principles Calculations. Journal of Phase Equilibria and Diffusion, 2009, 30, 480-486.	0.5	7
258	Effect of Ca addition on the as-cast microstructure and creep properties of Mg-5Zn-5Sn magnesium alloy. Rare Metals, 2009, 28, 576-581.	3.6	5
259	Bioinspired fabrication of high performance composite membranes with ultrathin defect-free skin layer. Journal of Membrane Science, 2009, 341, 279-285.	4.1	97
260	Effects of cerium on as-cast microstructure and mechanical properties of Mg–3Sn–2Ca magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 512, 132-138.	2.6	38
261	Effects of Y addition on as-cast microstructure and mechanical properties of Mg–3Sn–2Ca (wt.%) magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 525, 112-120.	2.6	59
262	Water vapor/propylene sorption and diffusion behavior in PVA–P(AA-AMPS) blend membranes by GCMC and MD simulation. Chemical Engineering Science, 2009, 64, 5192-5197.	1.9	27
263	Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy. Applied Surface Science, 2009, 255, 8363-8371.	3.1	105
264	Proton conducting membranes prepared by incorporation of organophosphorus acids into alcohol barrier polymers for direct methanol fuel cells. Journal of Power Sources, 2008, 185, 85-94.	4.0	46
265	As-cast microstructure, mechanical properties and casting fluidity of ZA84 magnesium alloy containing TiC. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 854-858.	0.4	0
266	Formation and characterization of cerium conversion coatings on magnesium alloy. Journal of Rare Earths, 2008, 26, 383-387.	2.5	63
267	<i>In situ</i> ellipsometric studies of formation kinetics of rare earth metal conversion coatings on magnesium alloy. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1308-1311.	0.8	6
268	P(AA-AMPS)–PVA/polysulfone composite hollow fiber membranes for propylene dehumidification. Journal of Membrane Science, 2008, 323, 395-403.	4.1	38
269	Enhanced dehumidification performance of PVA membranes by tuning the water state through incorporating organophosphorus acid. Journal of Membrane Science, 2008, 325, 727-734.	4.1	33
270	Molecular simulation on penetrants diffusion at the interface region of organic–inorganic hybrid membranes. Chemical Engineering Science, 2008, 63, 1072-1080.	1.9	44

#	Article	IF	CITATIONS
271	Molecular Dynamics Simulation of Diffusion Behavior of Benzene/Water in PDMS-Calix[4]arene Hybrid Pervaporation Membranes. Industrial & Engineering Chemistry Research, 2008, 47, 4440-4447.	1.8	41
272	RELAXOR BEHAVIOR OF BaZr0.2Ti0.8O3 CERAMICS WITH DIFFERENT GRAINS. Integrated Ferroelectrics, 2008, 104, 1-7.	0.3	10
273	Mechanical Properties and Microstructure of Magnesium-Aluminum Based Alloys Containing Strontium. Materials Transactions, 2008, 49, 1203-1211.	0.4	20
274	LEAKAGE CURRENT CHARACTERISTICS OF Pt/Ba0.6Sr0.4TiO3/Pt THIN-FILM CAPACITORS. Integrated Ferroelectrics, 2007, 91, 112-118.	0.3	11
275	Organicâ [^] Inorganic Hybrid Membranes with Simultaneously Enhanced Flux and Selectivity. Industrial & Lamp; Engineering Chemistry Research, 2007, 46, 2544-2549.	1.8	35
276	Novel nanocomposite pervaporation membranes composed of poly(vinyl alcohol) and chitosan-wrapped carbon nanotube. Journal of Membrane Science, 2007, 300, 13-19.	4.1	191
277	Coplanar Phase Shifters Based on Ferroelectric Thin Films. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 28, 229-235.	0.6	8
278	Comparation about efficiency of Al–10Sr and Mg–10Sr master alloys to grain refinement of AZ31 magnesium alloy. Journal of Materials Science, 2007, 42, 10074-10079.	1.7	32
279	Effect of annealing on leakage current characteristics of Pt/Ba0.6Sr0.4TiO3/Pt thin-film capacitors. Journal of Materials Science: Materials in Electronics, 2007, 18, 453-456.	1.1	4
280	Diffusion behavior of benzene/cyclohexane molecules in poly(vinyl alcohol)-graphite hybrid membranes by molecular dynamics simulation. Chemical Engineering Science, 2007, 62, 703-710.	1.9	121
281	Large spontaneous shape memory and magnetic-field induced strain in Ni51Mn25.5Ga23.5single crystal. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2532-2537.	0.8	2
282	The unusual change of permeation rate in PDMS membranes filled with crystalline calixarene and its derivative. Journal of Membrane Science, 2006, 279, 111-119.	4.1	34
283	PVA–GPTMS/TEOS hybrid pervaporation membrane for dehydration of ethylene glycol aqueous solution. Journal of Membrane Science, 2006, 281, 454-462.	4.1	111
284	Pervaporative removal of benzene from aqueous solution through supramolecule calixarene filled PDMS composite membranes. Separation and Purification Technology, 2006, 51, 352-358.	3.9	33
285	Calix[4]arene-filled poly dimethylsiloxane (PDMS) membranes for the pervaporative removal of benzene from dilute aqueous solution. Journal of Applied Polymer Science, 2006, 101, 90-100.	1.3	5
286	Pervaporation properties of PDMS membranes for removal of benzene from aqueous solution: Experimental and modeling. Chemical Engineering Journal, 2005, 114, 123-129.	6.6	40
287	Development of electric heating actuators of fiber reinforced metal composite. Journal of Materials Science, 2004, 39, 969-973.	1.7	2
288	Carbides in high-speed steels containing silicon. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2757-2766.	1.1	26

#	Article	IF	CITATIONS
289	Reactive wetting of a metal/ceramic system. Journal of Materials Research, 2002, 17, 911-917.	1.2	28
290	A model of work of adhesion for reactive metal/ceramic systems. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 2033-2038.	1.1	9
291	Microstructure and Corrosion Properties of Duplex-Structured Extruded Mg-6Li-4Zn-xMn Alloys. Acta Metallurgica Sinica (English Letters), 0, , 1.	1.5	9
292	Dynamic Compression Behavior and Microstructure of Extruded ZM61 Magnesium Alloy Under High Strain Rates. Jom, 0 , 1 .	0.9	1
293	Tensile Mechanical Properties and Deformation Mechanism of the Extruded ZM61 Magnesium Alloy at High Strain Rates. Advanced Engineering Materials, 0, , 2101554.	1.6	1