Sagir Adamu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/476047/publications.pdf Version: 2024-02-01

SACID ADAMIL

#	Article	IF	CITATIONS
1	Technological trends in nanosilica synthesis and utilization in advanced treatment of water and wastewater. Environmental Science and Pollution Research, 2022, 29, 42560-42600.	2.7	5
2	Tandem catalysis: A sustainable alternative for direct hydrogenation of CO2 to light olefins. Applied Catalysis A: General, 2022, 641, 118658.	2.2	23
3	Catalyst design and tuning for oxidative dehydrogenation of propane – A review. Applied Catalysis A: General, 2021, 609, 117914.	2.2	78
4	Promotional effects of CO2 on the oxidative dehydrogenation of propane over mesoporous VOX/γAl2O3 catalysts. Journal of Industrial and Engineering Chemistry, 2021, 96, 82-97.	2.9	19
5	Kinetics of Oxidative Cracking of nâ€Hexane to Light Olefins using Lattice Oxygen of a VO x /SrOâ€Î³Al 2 O 3 Catalyst. Chemistry - an Asian Journal, 2021, 16, 1792-1806.	1.7	2
6	CO2-mediated oxidative dehydrogenation of light alkanes to olefins: Advances and perspectives in catalyst design and process improvement. Applied Catalysis A: General, 2021, 623, 118273.	2.2	41
7	Kinetics of Oxidative Dehydrogenation of <i>n</i> -Butane to C4-Olefins over a VO _{<i>x</i>} /CeO ₂ –γAl ₂ O ₃ Catalyst in Gas-Phase Oxygen-Free Conditions. Industrial & Engineering Chemistry Research, 2020, 59, 17815-17827.	1.8	3
8	CO2 Assisted Oxidative Dehydrogenation of Propane to Propylene over Fluidizable MoO3/La2O3-Î3Al2O3 Catalysts. Journal of CO2 Utilization, 2020, 42, 101329.	3.3	26
9	Effects of metal support interaction on dry reforming of methane over Ni/ <scp>Ceâ€Al₂O₃</scp> catalysts. Canadian Journal of Chemical Engineering, 2020, 98, 2425-2434.	0.9	12
10	High-performance VOx on SrO-Î ³ Al2O3 catalyst for oxidative cracking of n-hexane to light olefins under anaerobic environment. Journal of Industrial and Engineering Chemistry, 2020, 89, 339-350.	2.9	8
11	Oxidative Dehydrogenation of <i>n</i> -Butane to C4 Olefins Using Lattice Oxygen of VO <i>_x</i> /Ce-meso-Al ₂ O ₃ under Gas-Phase Oxygen-Free Conditions. Energy & Fuels, 2020, 34, 7410-7421.	2.5	9
12	Sono-Assisted Synthesis and Kinetic Modeling of Nanocrystallite Silicalite-1-NiMo Catalysts for Hydrodesulfurization of Dibenzothiophene: Role of Sonication Time on Support Mesoporosity and Catalytic Activity. Industrial & Engineering Chemistry Research, 2019, 58, 18550-18560.	1.8	11
13	Synthesis, application and kinetic modeling of CeO _x –Si–CoMo catalysts for the hydrodesulfurization of dibenzothiophene. Reaction Chemistry and Engineering, 2019, 4, 724-737.	1.9	13
14	Ni/Ce Al2O3 for optimum hydrogen production from biomass/tar model compounds: Role of support type and ceria modification on desorption kinetics. International Journal of Hydrogen Energy, 2019, 44, 15811-15822.	3.8	26
15	Oxidative Dehydrogenation of Propane to Propylene over VOx on Mixed Î,-Al2O3/Alkaline Earth Metal Oxide Supports. Industrial & Engineering Chemistry Research, 2019, 58, 10785-10792.	1.8	15
16	The effect of calcination temperature on the activity of hydrodesulfurization catalysts supported on mesoporous activated carbon. Journal of Cleaner Production, 2019, 211, 1567-1575.	4.6	34
17	Kinetics of Steam Gasification of Glucose as a Biomass Surrogate over Ni/Ce–Mesoporous Al ₂ O ₃ in a Fluidized Bed Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 3128-3137.	1.8	8
18	Fluidizable Ni/Ce-meso-Al2O3 for gasification of glucose: Effect of catalyst reduction on hydrogen selectivity. Journal of Industrial and Engineering Chemistry, 2018, 64, 467-477.	2.9	19

SAGIR ADAMU

#	Article	IF	CITATIONS
19	Fluidizable NiO–Fe 2 O 3 /SiO 2 –γAl 2 O 3 for tar (toluene) conversion in biomass gasification. Chemical Engineering Research and Design, 2018, 116, 754-762.	2.7	27
20	Fluidizable Fe–Co/Ce–ZrO ₂ Catalysts for Steam Reforming of Toluene as a Tar Surrogate in Biomass Gasification. Energy & Fuels, 2018, 32, 12833-12842.	2.5	24
21	Ceria-stabilized meso-Al2O3: synthesis, characterization and desorption kinetics. Journal of Porous Materials, 2017, 24, 1343-1352.	1.3	14
22	UHMW Ziegler–Natta polyethylene: Synthesis, crystallization, and melt behavior. Journal of the Taiwan Institute of Chemical Engineers, 2017, 76, 141-155.	2.7	8
23	Enhancement of glucose gasification by Ni/La 2 O 3 -Al 2 O 3 towards the thermodynamic extremum at supercritical water conditions. Renewable Energy, 2017, 111, 399-409.	4.3	35
24	(ⁿ BuCp) ₂ ZrCl ₂ â€catalyzed ethyleneâ€4M1P copolymerization: Copolymer backbone structure, melt behavior, and crystallization. AICHE Journal, 2016, 62, 1688-1706.	1.8	9
25	Metallocene-catalyzed ethyleneâ ^{~°} α-olefin isomeric copolymerization: A perspective from hydrodynamic boundary layer mass transfer and design of MAO anion. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 92-105.	2.7	4
26	Thermal behaviour of polyethyleneâ€ <i>block</i> â€poly(methyl methacrylate) block copolymer: effect of multiple heating and cooling rates <i>versus</i> mathematical artefact. Polymer International, 2014, 63, 1824-1834.	1.6	6
27	Effects of supported (nBuCp)2ZrCl2 catalyst active center multiplicity on crystallization kinetics of ethylene homo- and copolymers. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1982-1991.	2.7	5
28	Evolved Gas Analysis and Kinetics of Catalytic and Non-Catalytic Pyrolysis of Microalgae Chlorella sp. Biomass With Ni/Î,-Al2O3 Catalyst via Thermogravimetric Analysis. Frontiers in Energy Research, 0, 9, .	1.2	12