Kristof Van Oost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4759951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluvial sediment export from pristine forested headwater catchments in the Congo Basin. Geomorphology, 2022, 398, 108046.	1.1	6
2	Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nature Communications, 2022, 13, 330.	5.8	17
3	A Semi-Empirical Anisotropy Correction Model for UAS-Based Multispectral Images of Bare Soil. Remote Sensing, 2022, 14, 537.	1.8	2
4	High-resolution soil organic carbon mapping at the field scale in Southern Belgium (Wallonia). Geoderma, 2022, 422, 115929.	2.3	10
5	UAV Remote Sensing for Detecting within-Field Spatial Variation of Winter Wheat Growth and Links to Soil Properties and Historical Management Practices. A Case Study on Belgian Loamy Soil. Remote Sensing, 2022, 14, 2806.	1.8	7
6	Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin. Soil, 2021, 7, 83-94.	2.2	9
7	Towards Mapping of Soil Crust Using Multispectral Imaging. Sensors, 2021, 21, 1850.	2.1	3
8	Ending the Cinderella status of terraces and lynchets in Europe: The geomorphology of agricultural terraces and implications for ecosystem services and climate adaptation. Geomorphology, 2021, 379, 107579.	1.1	24
9	Assessing soil redistribution of forest and cropland sites in wet tropical Africa using ²³⁹⁺²⁴⁰ Pu fallout radionuclides. Soil, 2021, 7, 399-414.	2.2	15
10	Evaluating the capability of a <scp>UAV</scp> â€borne spectrometer for soil organic carbon mapping in bare croplands. Land Degradation and Development, 2021, 32, 4375-4389.	1.8	7
11	Fire-derived phosphorus fertilization of African tropical forests. Nature Communications, 2021, 12, 5129.	5.8	10
12	Organic matter cycling along geochemical, geomorphic, and disturbance gradients in forest and cropland of the African Tropics – project TropSOC database version 1.0. Earth System Science Data, 2021, 13, 4133-4153.	3.7	13
13	Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland). Cryosphere, 2021, 15, 4445-4464.	1.5	20
14	Mapping Canopy Heights in Dense Tropical Forests Using Low-Cost UAV-Derived Photogrammetric Point Clouds and Machine Learning Approaches. Remote Sensing, 2021, 13, 3777.	1.8	11
15	Estimating temporal and spatial changes in soil organic carbon stocks and its controlling factors in moraine landscapes in Denmark. Catena, 2021, 206, 105502.	2.2	1
16	Volume estimation of soil stored in agricultural terrace systems: A geomorphometric approach. Catena, 2021, 207, 105687.	2.2	11
17	The central African soil spectral library: a new soil infrared repository and a geographical prediction analysis. Soil, 2021, 7, 693-715.	2.2	15
18	Soil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soils. Biogeosciences, 2021, 18, 6301-6312.	1.3	7

#	Article	IF	CITATIONS
19	Vis-NIR spectroscopic assessment of soil aggregate stability and aggregate size distribution in the Belgian Loam Belt. Geoderma, 2020, 357, 113958.	2.3	38
20	Plutonium aided reconstruction of caesium atmospheric fallout in European topsoils. Scientific Reports, 2020, 10, 11858.	1.6	31
21	Insights into the future of soil erosion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23205-23207.	3.3	20
22	Monitoring soil surface roughness under growing winter wheat with lowâ€altitude UAV sensing: Potential and limitations. Earth Surface Processes and Landforms, 2020, 45, 3747-3759.	1.2	8
23	Simulating Erosionâ€Induced Soil and Carbon Delivery From Uplands to Rivers in a Global Land Surface Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002121.	1.3	10
24	Multiplatform-SfM and TLS Data Fusion for Monitoring Agricultural Terraces in Complex Topographic and Landcover Conditions. Remote Sensing, 2020, 12, 1946.	1.8	42
25	Large-Scale, High-Resolution Mapping of Soil Aggregate Stability in Croplands Using APEX Hyperspectral Imagery. Remote Sensing, 2020, 12, 666.	1.8	19
26	Seasonality, drivers, and isotopic composition of soil CO ₂ fluxes from tropical forests of the Congo Basin. Biogeosciences, 2020, 17, 6207-6218.	1.3	6
27	A multi-isotope model for simulating soil organic carbon cycling in eroding landscapes (WATEM_C) Tj ETQq1 1	0.784314 1.3	rgBT /Overloc
28	Spatio-temporal dynamics of sediment transfer systems in landslide-prone Alpine catchments. Solid Earth, 2019, 10, 1489-1503.	1.2	18
29	Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection. Earth Surface Dynamics, 2019, 7, 807-827.	1.0	89
30	Distributed water erosion modelling at fine spatial resolution across Denmark. Geomorphology, 2019, 342, 150-162.	1.1	12
31	Mobilization of aged and biolabile soil carbon by tropical deforestation. Nature Geoscience, 2019, 12, 541-546.	5.4	97
32	Assessing the Performance of UAS-Compatible Multispectral and Hyperspectral Sensors for Soil Organic Carbon Prediction. Sustainability, 2019, 11, 1889.	1.6	32
33	Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Science of the Total Environment, 2019, 664, 1117-1132.	3.9	137
34	Evaluating the effects of soil erosion and productivity decline on soil carbon dynamics using a model-based approach. Soil, 2019, 5, 367-382.	2.2	12
35	Modeling global anthropogenic erosion in the Holocene. Holocene, 2019, 29, 367-379.	0.9	3
36	Natural vs anthropogenic streams in Europe: History, ecology and implications for restoration, river-rewilding and riverine ecosystem services. Earth-Science Reviews, 2018, 180, 185-205.	4.0	172

#	Article	IF	CITATIONS
37	Uncertainties in assessing tillage erosion – How appropriate are our measuring techniques?. Geomorphology, 2018, 304, 214-225.	1.1	29
38	A step towards a holistic assessment of soil degradation in Europe: Coupling on-site erosion with sediment transfer and carbon fluxes. Environmental Research, 2018, 161, 291-298.	3.7	116
39	Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma, 2018, 330, 65-78.	2.3	111
40	Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nature Geoscience, 2018, 11, 589-593.	5.4	116
41	Global soil organic carbon removal by water erosion under climate change and land use change during AD 1850–2005. Biogeosciences, 2018, 15, 4459-4480.	1.3	68
42	Phosphorus in agricultural soils: drivers of its distribution at the global scale. Global Change Biology, 2017, 23, 3418-3432.	4.2	75
43	Human-induced erosion has offset one-third of carbon emissions from land cover change. Nature Climate Change, 2017, 7, 345-349.	8.1	149
44	Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports, 2017, 7, 4175.	1.6	348
45	Modelling long-term soil organic carbon dynamics under the impact of land cover change and soil redistribution. Catena, 2017, 151, 63-73.	2.2	22
46	Dynamics of soil fragment size distribution under successive rainfalls and its implication to size-selective sediment transport and deposition. Geoderma, 2017, 308, 104-111.	2.3	20
47	An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 2017, 8, 2013.	5.8	1,398
48	Modelling the Effect of Land Management Changes on Soil Organic Carbon Stocks in a Mediterranean Cultivated Field. Land Degradation and Development, 2017, 28, 515-523.	1.8	27
49	Soil conservation in the 21st century: why we need smart agricultural intensification. Soil, 2017, 3, 45-59.	2.2	70
50	Modelling a century of soil redistribution processes and carbon delivery from small watersheds using a multi-class sediment transport model. Earth Surface Dynamics, 2017, 5, 113-124.	1.0	14
51	Unravelling earth flow dynamics with 3-D time series derived from UAV-SfM models. Earth Surface Dynamics, 2017, 5, 791-806.	1.0	27
52	Process-oriented modelling to identify main drivers of erosion-induced carbon fluxes. Soil, 2017, 3, 83-94.	2.2	17
53	Modeling long-term, large-scale sediment storage using a simple sediment budget approach. Earth Surface Dynamics, 2016, 4, 407-423.	1.0	15
54	Moderate topsoil erosion rates constrain the magnitude of the erosion-induced carbon sink and agricultural productivity losses on the Chinese Loess Plateau. Biogeosciences, 2016, 13, 4735-4750.	1.3	32

4

#	Article	IF	CITATIONS
55	UAS-based soil carbon mapping using VIS-NIR (480–1000 nm) multi-spectral imaging: Potential and limitations. Geoderma, 2016, 275, 55-66.	2.3	65
56	Lateral transport of soil carbon and landâ^'atmosphere CO ₂ flux induced by water erosion in China. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6617-6622.	3.3	117
57	Reproducing CO2 exchange rates of a crop rotation at contrasting terrain positions using two different modelling approaches. Soil and Tillage Research, 2016, 156, 219-229.	2.6	7
58	Changes in soil organic carbon pools along a chronosequence of land abandonment in southern Spain. Geoderma, 2016, 268, 14-21.	2.3	33
59	High resolution characterization of the soil organic carbon depth profile in a soil landscape affected by erosion. Soil and Tillage Research, 2016, 156, 185-193.	2.6	34
60	Towards mapping soil carbon landscapes: Issues of sampling scale and transferability. Soil and Tillage Research, 2016, 156, 194-208.	2.6	32
61	Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms. Geomorphology, 2016, 260, 4-15.	1.1	221
62	Modelling the impact of agricultural management on soil carbon stocks at the regional scale: the role of lateral fluxes. Global Change Biology, 2015, 21, 3181-3192.	4.2	63
63	Constraining a coupled erosion and soil organic carbon model using hillslopeâ€scale patterns of carbon stocks and pool composition. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 452-465.	1.3	15
64	Vertical partitioning and controlling factors of gradient-based soil carbon dioxide fluxes in two contrasted soil profiles along a loamy hillslope. Biogeosciences, 2015, 12, 4637-4649.	1.3	18
65	Soil redistribution and weathering controlling the fate of geochemical and physical carbon stabilization mechanisms in soils of an eroding landscape. Biogeosciences, 2015, 12, 1357-1371.	1.3	36
66	Improving the global applicability of the RUSLE model – adjustment of the topographical and rainfall erosivity factors. Geoscientific Model Development, 2015, 8, 2893-2913.	1.3	87
67	The interdisciplinary nature of <i>SOIL</i> . Soil, 2015, 1, 117-129.	2.2	494
68	Sustained high magnitude erosional forcing generates an organic carbon sink: Test and implications in the Loess Plateau, China. Earth and Planetary Science Letters, 2015, 411, 281-289.	1.8	40
69	Predicting the longâ€ŧerm fate of buried organic carbon in colluvial soils. Global Biogeochemical Cycles, 2015, 29, 65-79.	1.9	26
70	Erosion-induced carbon redistribution, burial and mineralisation $\hat{a} \in$ " Is the episodic nature of erosion processes important?. Catena, 2015, 133, 282-292.	2.2	41
71	Soil carbon storage controlled by interactions between geochemistry and climate. Nature Geoscience, 2015, 8, 780-783.	5.4	509
72	The fate of buried organic carbon in colluvial soils: a long-term perspective. Biogeosciences, 2014, 11, 873-883.	1.3	52

#	Article	IF	CITATIONS
73	Regionalâ€scale characterization of the geomorphic control of the spatial distribution of soil organic carbon in cropland. European Journal of Soil Science, 2014, 65, 539-552.	1.8	11
74	Importance of land use patterns for erosion-induced carbon fluxes in a Mediterranean catchment. Agriculture, Ecosystems and Environment, 2014, 189, 181-189.	2.5	29
75	Combined effect of geomorphic and pedogenic processes on the distribution of soil organic carbon quality along an eroding hillslope on loess soil. Geoderma, 2014, 216, 36-47.	2.3	65
76	Factors controlling soil organic carbon persistence along an eroding hillslope on the loess belt. Soil Biology and Biochemistry, 2014, 77, 187-196.	4.2	24
77	Carbon associated with clay and fine silt as an indicator for SOC decadal evolution under different residue management practices. Agriculture, Ecosystems and Environment, 2014, 196, 1-9.	2.5	24
78	Scratching the Critical Zone: The Global Footprint of Agricultural Soil Erosion. Procedia Earth and Planetary Science, 2014, 10, 313-318.	0.6	25
79	Quantifying and modelling the impact of land consolidation and field borders on soil redistribution in agricultural landscapes (1954–2009). Catena, 2013, 110, 184-195.	2.2	40
80	Spatially-explicit regional-scale prediction of soil organic carbon stocks in cropland using environmental variables and mixed model approaches. Geoderma, 2013, 204-205, 31-42.	2.3	44
81	Spatial variability and change in soil organic carbon stocks in response to recovery following land abandonment and erosion in mountainous drylands. Soil Use and Management, 2013, 29, 65-76.	2.6	39
82	Soil organic carbon mobilization by interrill erosion: Insights from size fractions. Journal of Geophysical Research F: Earth Surface, 2013, 118, 348-360.	1.0	46
83	Short Communication: Humans and the missing C-sink: erosion and burial of soil carbon through time. Earth Surface Dynamics, 2013, 1, 45-52.	1.0	43
84	Soil Organic Carbon Assessment at High Vertical Resolution using Closedâ€īube Sampling and Visâ€NIR Spectroscopy. Soil Science Society of America Journal, 2013, 77, 1430-1435.	1.2	22
85	Calibración y aplicación de un modelo de erosión y dinámica del carbono (SPEROS-C) a doce pequeñas cuencas del sureste español. Cuadernos De Investigacion Geografica, 2013, 39, 225.	0.6	1
86	Legacy of human-induced C erosion and burial on soil–atmosphere C exchange. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19492-19497.	3.3	126
87	Soil erosion, sedimentation and the carbon cycle. Catena, 2012, 94, 1-2.	2.2	25
88	Lignin signature as a function of land abandonment and erosion in dry luvisols of SE Spain. Catena, 2012, 93, 78-86.	2.2	9
89	Towards constraining the magnitude of global agricultural sediment and soil organic carbon fluxes. Earth Surface Processes and Landforms, 2012, 37, 642-655.	1.2	114
90	Carbon cycling in eroding landscapes: geomorphic controls on soil organic C pool composition and C stabilization. Global Change Biology, 2012, 18, 2218-2232.	4.2	187

#	Article	IF	CITATIONS
91	Model based analysis of lateral and vertical soil carbon fluxes induced by soil redistribution processes in a small agricultural catchment. Earth Surface Processes and Landforms, 2012, 37, 193-208.	1.2	58
92	Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments—A review. Earth-Science Reviews, 2011, 106, 92-104.	4.0	108
93	Evaluating the impact of soil redistribution on the <i>in situ</i> mineralization of soil organic carbon. Earth Surface Processes and Landforms, 2011, 36, 427-438.	1.2	80
94	Model-Based Biospheric Greenhouse Gas Balance of Hungary. , 2011, , 295-330.		3
95	The European carbon balance. Part 2: croplands. Global Change Biology, 2010, 16, 1409-1428.	4.2	185
96	The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 2010, 3, 311-314.	5.4	686
97	Reply to â€~Erosion and climate'. Nature Geoscience, 2010, 3, 738-738.	5.4	8
98	The effect of soil redistribution on soil organic carbon: an experimental study. Biogeosciences, 2010, 7, 3971-3986.	1.3	61
99	Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology, 2010, 122, 167-177.	1.1	561
100	Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area. Geomorphology, 2010, 124, 65-74.	1.1	106
101	A simple method for estimating the influence of eroding soil profiles on atmospheric CO ₂ . Global Biogeochemical Cycles, 2010, 24, .	1.9	43
102	Accelerated sediment fluxes by water and tillage erosion on European agricultural land. Earth Surface Processes and Landforms, 2009, 34, 1625-1634.	1.2	77
103	Driving forces of soil organic carbon evolution at the landscape and regional scale using data from a stratified soil monitoring. Global Change Biology, 2009, 15, 2981-3000.	4.2	77
104	Erosion of soil organic carbon: Implications for carbon sequestration. Geophysical Monograph Series, 2009, , 189-202.	0.1	4
105	Evaluation of a dynamic multiâ€class sediment transport model in a catchment under soilâ€conservation agriculture. Earth Surface Processes and Landforms, 2008, 33, 1639-1660.	1.2	40
106	The compatibility of erosion data at different temporal scales. Earth and Planetary Science Letters, 2008, 265, 138-152.	1.8	23
107	The relationship between landform and the distribution of soil C, N and P under conventional and minimum tillage. Geoderma, 2008, 144, 180-188.	2.3	32
108	The Impact of Agricultural Soil Erosion on the Global Carbon Cycle. Science, 2007, 318, 626-629.	6.0	802

#	Article	IF	CITATIONS
109	Quantifying carbon sequestration as a result of soil erosion and deposition: retrospective assessment using caesium-137 and carbon inventories. Global Change Biology, 2007, 13, 2610-2625.	4.2	79
110	Rill erosion: Exploring the relationship between experiments, modelling and field observations. Earth-Science Reviews, 2007, 84, 87-102.	4.0	218
111	Responses of a semi-arid landscape to human disturbance: A simulation study of the interaction between rock fragment cover, soil erosion and land use change. Geoderma, 2006, 133, 19-31.	2.3	67
112	Reconstructing ancient topography through erosion modelling. Geomorphology, 2006, 78, 250-264.	1.1	43
113	Soil translocation resulting from multiple passes of tillage under normal field operating conditions. Soil and Tillage Research, 2006, 87, 218-230.	2.6	36
114	Tillage Erosion. , 2006, , 599-608.		6
115	Tillage erosion: a review of controlling factors and implications for soil quality. Progress in Physical Geography, 2006, 30, 443-466.	1.4	174
116	Soil erosion as a driver of land-use change. Agriculture, Ecosystems and Environment, 2005, 105, 467-481.	2.5	209
117	From water to tillage erosion dominated landform evolution. Geomorphology, 2005, 72, 193-203.	1.1	83
118	Spatially distributed data for erosion model calibration and validation: The Ganspoel and Kinderveld datasets. Catena, 2005, 61, 105-121.	2.2	52
119	Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena, 2005, 61, 131-154.	2.2	581
120	Landscape-scale modeling of carbon cycling under the impact of soil redistribution: The role of tillage erosion. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	144
121	Tillage erosion and its effect on soil properties and crop yield in Denmark. Journal of Environmental Quality, 2005, 34, 312-24.	1.0	73
122	Spatial evaluation of a multi-class sediment transport and deposition model. Earth Surface Processes and Landforms, 2004, 29, 1027-1044.	1.2	58
123	Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy. Journal of Hydrology, 2004, 299, 4-14.	2.3	184
124	A process-based conversion model for caesium-137 derived erosion rates on agricultural land: an integrated spatial approach. Earth Surface Processes and Landforms, 2003, 28, 187-207.	1.2	67
125	Integrating science, policy and farmers to reduce soil loss and sediment delivery in Flanders, Belgium. Environmental Science and Policy, 2003, 6, 95-103.	2.4	40
126	Simulation of the redistribution of soil by tillage on complex topographies. European Journal of Soil Science, 2003, 54, 63-76.	1.8	47

#	Article	IF	CITATIONS
127	Characteristics and controlling factors of old gullies under forest in a temperate humid climate: a case study from the Meerdaal Forest (Central Belgium). Geomorphology, 2003, 56, 15-29.	1.1	65
128	Identification of important factors in the process of tillage erosion: the case of mouldboard tillage. Soil and Tillage Research, 2002, 65, 77-93.	2.6	62
129	Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling. Soil Use and Management, 2002, 18, 386-394.	2.6	98
130	Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling. Soil Use and Management, 2002, 18, 386-394.	2.6	18
131	Modelling mean annual sediment yield using a distributed approach. Earth Surface Processes and Landforms, 2001, 26, 1221-1236.	1.2	338
132	Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landscape Ecology, 2000, 15, 577-589.	1.9	432
133	Modeling Translocation and Dispersion of Soil Constituents by Tillage on Sloping Land. Soil Science Society of America Journal, 2000, 64, 1733-1739.	1.2	48
134	Short Communication: Humans and the missing C-sink: erosion and burial of soil carbon through time. , 0, , .		4
135	Substantial Organic and Particulate Nitrogen and Phosphorus Export from Geomorphologically Stable African Tropical Forest Landscapes. Ecosystems, 0, , .	1.6	0