Enrique Jaimovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4759853/publications.pdf

Version: 2024-02-01

101 papers

4,681 citations

39 h-index 106344 65 g-index

105 all docs

 $\begin{array}{c} 105 \\ \\ \text{docs citations} \end{array}$

105 times ranked 6176 citing authors

#	Article	IF	CITATIONS
1	Endoplasmic Reticulum and the Unfolded Protein Response. International Review of Cell and Molecular Biology, 2013, 301, 215-290.	3.2	440
2	Testosterone Stimulates Intracellular Calcium Release and Mitogen-Activated Protein Kinases Via a G Protein-Coupled Receptor in Skeletal Muscle Cells. Endocrinology, 2003, 144, 3586-3597.	2.8	218
3	Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovascular Research, 2008, 77, 387-397.	3.8	212
4	New insights into IGF-1 signaling in the heart. Trends in Endocrinology and Metabolism, 2014, 25, 128-137.	7.1	190
5	ATP Released by Electrical Stimuli Elicits Calcium Transients and Gene Expression in Skeletal Muscle. Journal of Biological Chemistry, 2009, 284, 34490-34505.	3.4	136
6	Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase; ROS-elicited Ca2+ stimulates ERK, CREB, early genes. Journal of Cellular Physiology, 2006, 209, 379-388.	4.1	134
7	Testosterone Signals through mTOR and Androgen Receptor to Induce Muscle Hypertrophy. Medicine and Science in Sports and Exercise, 2013, 45, 1712-1720.	0.4	108
8	IP ₃ receptors, IP ₃ transients, and nucleus-associated Ca ²⁺ signals in cultured skeletal muscle. American Journal of Physiology - Cell Physiology, 2000, 278, C998-C1010.	4.6	104
9	Electrical Stimuli Release ATP to Increase GLUT4 Translocation and Glucose Uptake via PI3Kγ-Akt-AS160 in Skeletal Muscle Cells. Diabetes, 2013, 62, 1519-1526.	0.6	102
10	Dihydropyridine Receptors as Voltage Sensors for a Depolarization-evoked, IP3R-mediated, Slow Calcium Signal in Skeletal Muscle Cells. Journal of General Physiology, 2003, 121, 3-16.	1.9	98
11	IP3 receptor function and localization in myotubes: an unexplored Ca2+ signaling pathway in skeletal muscle. Journal of Cell Science, 2001, 114, 3673-3683.	2.0	95
12	NADPH Oxidase and Hydrogen Peroxide Mediate Insulin-induced Calcium Increase in Skeletal Muscle Cells. Journal of Biological Chemistry, 2009, 284, 2568-2575.	3.4	83
13	Increased Resting Intracellular Calcium Modulates NF-κB-dependent Inducible Nitric-oxide Synthase Gene Expression in Dystrophic mdx Skeletal Myotubes. Journal of Biological Chemistry, 2012, 287, 20876-20887.	3.4	79
14	ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells. PLoS ONE, 2015, 10, e0129882.	2.5	79
15	Aldosterone- and testosterone-mediated intracellular calcium response in skeletal muscle cell cultures. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E132-E139.	3.5	78
16	Depolarization-induced slow calcium transients activate early genes in skeletal muscle cells. American Journal of Physiology - Cell Physiology, 2003, 284, C1438-C1447.	4.6	78
17	Harmaline: A competitive inhibitor of Na Ion in the (Na++K+)-ATPase system. Journal of Membrane Biology, 1973, 13, 263-282.	2.1	76
18	Insulin-like Growth Factor-1 Induces an Inositol 1,4,5-Trisphosphate-dependent Increase in Nuclear and Cytosolic Calcium in Cultured Rat Cardiac Myocytes. Journal of Biological Chemistry, 2004, 279, 7554-7565.	3.4	73

#	Article	IF	Citations
19	Local Control of Nuclear Calcium Signaling in Cardiac Myocytes by Perinuclear Microdomains of Sarcolemmal Insulin-Like Growth Factor 1 Receptors. Circulation Research, 2013, 112, 236-245.	4.5	73
20	Xestospongin B, a competitive inhibitor of IP3-mediated Ca2+signalling in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells. FEBS Letters, 2005, 579, 2051-2057.	2.8	71
21	Muscle function decline and mitochondria changes in middle age precede sarcopenia in mice. Aging, 2018, 10, 34-55.	3.1	71
22	Pacific ciguatoxin-1b effect over Na+and K+currents, inositol 1,4,5-triphosphate content and intracellular Ca2+signals in cultured rat myotubes. British Journal of Pharmacology, 2002, 137, 1055-1062.	5.4	69
23	IP3-dependent, post-tetanic calcium transients induced by electrostimulation of adult skeletal muscle fibers. Journal of General Physiology, 2010, 136, 455-467.	1.9	69
24	Nuclear inositol 1,4,5-trisphosphate receptors regulate local Ca2+ transients and modulate cAMP response element binding protein phosphorylation. Journal of Cell Science, 2005, 118, 3131-3140.	2.0	66
25	Altered ROS production, NF- $\hat{\mathbb{P}}$ B activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1410-1419.	3.8	56
26	Phosphorylation of phosphatidylinositol by transverse tubule vesicles and its possible role in excitation-contraction coupling. FEBS Letters, 1986, 202, 69-73.	2.8	55
27	Differences in both inositol 1,4,5-trisphosphate mass and inositol 1,4,5-trisphosphate receptors between normal and dystrophic skeletal muscle cell lines., 1998, 21, 902-909.		55
28	Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity. Journal of Cell Science, 2013, 126, 1189-1198.	2.0	55
29	Insulin elicits a ROS-activated and an IP3-dependent Ca2+ release; both impinge on GLUT4 translocation. Journal of Cell Science, 2014, 127, 1911-23.	2.0	54
30	Reactive oxygen species and calcium signals in skeletal muscle: A crosstalk involved in both normal signaling and disease. Cell Calcium, 2016, 60, 172-179.	2.4	52
31	Mitochondrial Calcium Increase Induced by RyR1 and IP3R Channel Activation After Membrane Depolarization Regulates Skeletal Muscle Metabolism. Frontiers in Physiology, 2018, 9, 791.	2.8	51
32	Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca ²⁺ signals and an IL-6 autocrine loop. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E869-E882.	3.5	50
33	Calcium Transients in 1B5 Myotubes Lacking Ryanodine Receptors Are Related to Inositol Trisphosphate Receptors. Journal of Biological Chemistry, 2001, 276, 22868-22874.	3.4	49
34	Nifedipine Treatment Reduces Resting Calcium Concentration, Oxidative and Apoptotic Gene Expression, and Improves Muscle Function in Dystrophic mdx Mice. PLoS ONE, 2013, 8, e81222.	2.5	49
35	Signal transduction and gene expression regulated by calcium release from internal stores in excitable cells. Biological Research, 2004, 37, 701-12.	3.4	49
36	lon pathways in transverse tubules. Quantification of receptors in membranes isolated from frog and rabbit skeletal muscle. Biochimica Et Biophysica Acta - Biomembranes, 1986, 855, 89-98.	2.6	47

#	Article	IF	CITATIONS
37	Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse. Physiological Reports, 2018, 6, e13800.	1.7	46
38	Slow Calcium Signals after Tetanic Electrical Stimulation in Skeletal Myotubes. Biophysical Journal, 2004, 86, 3042-3051.	0.5	44
39	Mitochondria fine-tune the slow Ca2+ transients induced by electrical stimulation of skeletal myotubes. Cell Calcium, 2010, 48, 358-370.	2.4	42
40	Inositol trisphosphate and excitation-contraction coupling in skeletal muscle. Journal of Bioenergetics and Biomembranes, 1989, 21, 267-281.	2.3	40
41	IP3Receptors and Associated Ca2+Signals Localize to Satellite Cells and to Components of the Neuromuscular Junction in Skeletal Muscle. Journal of Neuroscience, 2003, 23, 8185-8192.	3.6	40
42	Anabolic Androgenic Steroids and Intracellular Calcium Signaling: A Mini Review on Mechanisms and Physiological Implications. Mini-Reviews in Medicinal Chemistry, 2011, 11, 390-398.	2.4	40
43	The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxidants and Redox Signaling, 2019, 31, 1371-1410.	5.4	40
44	NF- \hat{l}^2 B activation by depolarization of skeletal muscle cells depends on ryanodine and IP3 receptor-mediated calcium signals. American Journal of Physiology - Cell Physiology, 2007, 292, C1960-C1970.	4.6	39
45	Differential gene expression in skeletal muscle cells after membrane depolarization. Journal of Cellular Physiology, 2007, 210, 819-830.	4.1	39
46	NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout. Frontiers in Physiology, 2016, 7, 282.	2.8	39
47	IGFâ€1 induces IP ₃ â€dependent calcium signal involved in the regulation of myostatin gene expression mediated by NFAT during myoblast differentiation. Journal of Cellular Physiology, 2013, 228, 1452-1463.	4.1	38
48	Insulin-Dependent H2O2 Production Is Higher in Muscle Fibers of Mice Fed with a High-Fat Diet. International Journal of Molecular Sciences, 2013, 14, 15740-15754.	4.1	37
49	Depolarization of Skeletal Muscle Cells induces Phosphorylation of cAMP Response Element Binding Protein via Calcium and Protein Kinase Cl̂±. Journal of Biological Chemistry, 2004, 279, 39122-39131.	3.4	36
50	Membrane Electrical Activity Elicits Inositol 1,4,5-Trisphosphate-dependent Slow Ca2+ Signals through a Gl^2l^3 /Phosphatidylinositol 3-Kinase l^3 Pathway in Skeletal Myotubes. Journal of Biological Chemistry, 2006, 281, 12143-12154.	3.4	34
51	Calcium modulation of phosphoinositide kinases in transverse tubule vesicles from frog skeletal muscle. Archives of Biochemistry and Biophysics, 1988, 262, 360-366.	3.0	33
52	ATP release due to Thy-1–integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation. Journal of Cell Science, 2011, 124, 1581-1588.	2.0	33
53	NFAT activation by membrane potential follows a calcium pathway distinct from other activity-related transcription factors in skeletal muscle cells. American Journal of Physiology - Cell Physiology, 2008, 294, C715-C725.	4.6	32
54	Depolarization-induced slow Ca2+ transients stimulate transcription of IL-6 gene in skeletal muscle cells. American Journal of Physiology - Cell Physiology, 2006, 290, C1428-C1436.	4.6	31

#	Article	IF	CITATIONS
55	Characterization of a multiprotein complex involved in excitation-transcription coupling of skeletal muscle. Skeletal Muscle, 2016, 6, 15.	4.2	31
56	HERPUD1 protects against oxidative stress-induced apoptosis through downregulation of the inositol 1,4,5-trisphosphate receptor. Free Radical Biology and Medicine, 2016, 90, 206-218.	2.9	31
57	IP3 dependent Ca2+ signals in muscle cells are involved in regulation of gene expression. Biological Research, 2002, 35, 195-202.	3.4	31
58	Calcium Fluxes, Ion Currents and Dihydropyridine Receptors in a New Immortal Cell Line from Rat Heart Muscle. Journal of Molecular and Cellular Cardiology, 1993, 25, 829-845.	1.9	30
59	The cholesterol-lowering agent methyl- \hat{l}^2 -cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E294-E305.	3.5	30
60	IP3 receptor blockade restores autophagy and mitochondrial function in skeletal muscle fibers of dystrophic mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3685-3695.	3.8	28
61	ATP Signaling in Skeletal Muscle. Exercise and Sport Sciences Reviews, 2014, 42, 110-116.	3.0	26
62	Functional Muscarinic Receptors in Cultured Skeletal Muscle. Archives of Biochemistry and Biophysics, 1996, 331, 41-47.	3.0	25
63	Electrical Stimuli Are Anti-Apoptotic in Skeletal Muscle via Extracellular ATP. Alteration of This Signal in Mdx Mice Is a Likely Cause of Dystrophy. PLoS ONE, 2013, 8, e75340.	2.5	24
64	Membrane depolarization induces calcium-dependent upregulation of Hsp70 and Hmox-1 in skeletal muscle cells. American Journal of Physiology - Cell Physiology, 2009, 297, C581-C590.	4.6	23
65	Calcium release modulated by inositol trisphosphate in ruptured fibers from frog skeletal muscle. Pflugers Archiv European Journal of Physiology, 1990, 416, 296-304.	2.8	22
66	Abnormal distribution of inositol 1,4,5â€trisphosphate receptors in human muscle can be related to altered calcium signals and gene expression in Duchenne dystrophyâ€derived cells. FASEB Journal, 2010, 24, 3210-3221.	0.5	22
67	High extracellular ATP levels released through pannexin-1 channels mediate inflammation and insulin resistance in skeletal muscle fibres of diet-induced obese mice. Diabetologia, 2021, 64, 1389-1401.	6.3	21
68	Electrical Stimulation Induces Calcium-dependent Up-regulation of Neuregulin- $1\ddot{i}_{2}$ in Dystrophic Skeletal Muscle Cell Lines. Cellular Physiology and Biochemistry, 2012, 29, 919-930.	1.6	19
69	Chemical transmission at the triad: InsP3?. Journal of Muscle Research and Cell Motility, 1991, 12, 316-320.	2.0	18
70	A human skeletal muscle cell line obtained from an adult donor. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1134, 247-255.	4.1	17
71	Single-channel recording of inositol trisphosphate receptor in the isolated nucleus of a muscle cell line. Biological Research, 2006, 39, 541-53.	3.4	17
72	Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	4.0	16

#	Article	IF	CITATIONS
73	Exercise Sensitizes Skeletal Muscle to Extracellular ATP for IL-6 Expression in Mice. International Journal of Sports Medicine, 2014, 35, 273-279.	1.7	15
74	An integrated mechanism of cardiomyocyte nuclear Ca2+ signaling. Journal of Molecular and Cellular Cardiology, 2014, 75, 40-48.	1.9	15
75	Skeletal muscle excitation-metabolism coupling. Archives of Biochemistry and Biophysics, 2019, 664, 89-94.	3.0	15
76	Ion channels in a skeletal muscle cell line from a Duchenne muscular dystrophy patient. Muscle and Nerve, 1994, 17, 1021-1028.	2.2	13
77	Herpud1 impacts insulin-dependent glucose uptake in skeletal muscle cells by controlling the Ca2+-calcineurin-Akt axis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1653-1662.	3.8	13
78	Sodium-dependent action potentials induced by brevetoxin-3 trigger both IP3 increase and intracellular Ca2+ release in rat skeletal myotubes. Cell Calcium, 2008, 44, 289-297.	2.4	12
79	IP3 receptors and Ca2+ signals in adult skeletal muscle satellite cells in situ. Biological Research, 2004, 37, 635-9.	3.4	11
80	Pannexin-1 and CaV1.1 show reciprocal interaction during excitation–contraction and excitation–transcription coupling in skeletal muscle. Journal of General Physiology, 2021, 153, .	1.9	8
81	Sodium pathway markers in normal and kindled frog brains. Neuroscience Letters, 1986, 65, 331-335.	2.1	6
82	Measurement of Calcium Release Due to Inositol Trisphosphate Receptors in Skeletal Muscle. Methods in Molecular Biology, 2012, 798, 383-393.	0.9	6
83	Localized nuclear and perinuclear Ca2+ signals in intact mouse skeletal muscle fibers. Frontiers in Physiology, 2015, 6, 263.	2.8	6
84	Interleukin-6 and neuregulin-1 as regulators of utrophin expression via the activation of NRG-1/ErbB signaling pathway in mdx cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 770-780.	3.8	6
85	Possible link of different slow calcium signals generated by membrane potential and hormones to differential gene expression in cultured muscle cells. Biological Research, 2004, 37, 625-33.	3.4	5
86	Editorial: Calcium Homeostasis in Skeletal Muscle Function, Plasticity, and Disease. Frontiers in Physiology, 2021, 12, 671292.	2.8	4
87	Extracellular ATP promotes protein synthesis in skeletal muscle through activation of the Aktâ€mTOR signaling pathway. FASEB Journal, 2018, 32, 856.29.	0.5	3
88	ATP Sensitivity and IP3-Dependent Calcium Transients Which Regulate Gene Expression in Adult Muscle Fibers are Altered in Mdx Mice. Biophysical Journal, 2011, 100, 592a.	0.5	2
89	Evaluating the essential role of <scp>RONS</scp> in vivo in exercised human muscle. Acta Physiologica, 2018, 222, e12972.	3.8	1
90	Changes in Gene Expression of the MCU Complex Are Induced by Electrical Stimulation in Adult Skeletal Muscle. Frontiers in Physiology, 2020, 11, 601313.	2.8	1

#	Article	IF	CITATIONS
91	On the molecular mechanism of excitation–transcription coupling in skeletal muscle. Journal of General Physiology, 2022, 154, .	1.9	1
92	Modulation of the activity of the transverse tubule Mg2+ATPase from frog skeletal muscle by a monoclonal antibody in vitro. Molecular and Cellular Biochemistry, 1991, 106, 99-107.	3.1	0
93	Both Membrane Depolarization And IL-6 Induce Calcium-Dependent Hsp70 Expression In Skeletal Muscle Cells. Biophysical Journal, 2009, 96, 121a-122a.	0.5	O
94	Cav1.1 Controls ATP Release in Adult Muscle Fibers. Biophysical Journal, 2013, 104, 204a.	0.5	0
95	Insulin Induces both H2O2 Production and IP3-Dependent Mitochondria Ca2+ Uptake. H2O2 Oxidizes RyR to Elicit Ca2+ Release and GLUT4 Translocation in Skeletal Muscle Cells. Biophysical Journal, 2013, 104, 617a.	0.5	O
96	Atp-Induced Membrane Depolarization Relates to Skeletal Muscle Fibers Plasticity. Biophysical Journal, 2013, 104, 290a.	0.5	0
97	Nifedipine Treatment Improves Muscle Function in Mdx Mice. Biophysical Journal, 2014, 106, 727a-728a.	0.5	O
98	Testosterone induces skeletal muscle hypertrophy via Akt/mTOR/S6K1 pathway and the androgen receptor. FASEB Journal, 2012, 26, lb676.	0.5	0
99	Novel mechanisms to ATPâ€dependent glucose uptake in skeletal muscle cells. FASEB Journal, 2012, 26, lb715.	0.5	О
100	Insulinâ€dependent mitochondrial Ca 2+ uptake in skeletal muscle is quickly disrupted in highâ€fat diet fed mice (572.3). FASEB Journal, 2014, 28, 572.3.	0.5	0
101	Purinergic Signaling Controls Fibroblast Growth Factorâ€21 Expression in Skeletal Muscle through Akt/mTOR Pathway FASEB Journal, 2018, 32, 533.10.	0.5	О