
Guillaume Romet-Lemonne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4759563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Celebrating 20 years of live single-actin-filament studies with five golden rules. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
2	Using Microfluidics and Fluorescence Microscopy to Study the Assembly Dynamics of Single Actin Filaments and Bundles. Journal of Visualized Experiments, 2022, , .	0.3	3
3	Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite. Nature Communications, 2022, 13, .	12.8	8
4	Mechanically tuning actin filaments to modulate the action of actin-binding proteins. Current Opinion in Cell Biology, 2021, 68, 72-80.	5.4	28
5	The Arp1/11 minifilament of dynactin primes the endosomal Arp2/3 complex. Science Advances, 2021, 7, .	10.3	23
6	Twinfilin uncaps filament barbed ends to promote turnover of lamellipodial actin networks. Nature Cell Biology, 2021, 23, 147-159.	10.3	47
7	The dynamic instability of actin filament barbed ends. Journal of Cell Biology, 2021, 220, .	5.2	9
8	Direct measurement of nearâ€nanoâ€Newton forces developed by selfâ€organizing actomyosin fibers bound αâ€catenin. Biology of the Cell, 2021, 113, 441-449.	2.0	1
9	Actin filament oxidation by MICAL1 suppresses protections from cofilinâ€induced disassembly. EMBO Reports, 2021, 22, e50965.	4.5	23
10	The many implications of actin filament helicity. Seminars in Cell and Developmental Biology, 2020, 102, 65-72.	5.0	28
11	Geometrical Constraints Greatly Hinder Formin mDia1 Activity. Nano Letters, 2020, 20, 22-32.	9.1	20
12	The advantages of microfluidics to study actin biochemistry and biomechanics. Journal of Muscle Research and Cell Motility, 2020, 41, 175-188.	2.0	9
13	Dynamics of Tpm1.8 domains on actin filaments with single-molecule resolution. Molecular Biology of the Cell, 2020, 31, 2452-2462.	2.1	8
14	InÂVitro Reconstitution of Dynein Force Exertion in a Bulk Viscous Medium. Current Biology, 2020, 30, 4534-4540.e7.	3.9	11
15	SPIN90 associates with mDia1 and the Arp2/3 complex to regulate cortical actin organization. Nature Cell Biology, 2020, 22, 803-814.	10.3	48
16	Actin reduction by MsrB2 is a key component of the cytokinetic abscission checkpoint and prevents tetraploidy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4169-4179.	7.1	32
17	Torsional stress generated by ADF/cofilin on cross-linked actin filaments boosts their severing. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2595-2602.	7.1	78
18	Mechanism of synergistic actin filament pointed end depolymerization by cyclase-associated protein and cofilin. Nature Communications, 2019, 10, 5320.	12.8	76

#	Article	IF	CITATIONS
19	Quantitative Variations with pH of Actin Depolymerizing Factor/Cofilin's Multiple Actions on Actin Filaments. Biochemistry, 2019, 58, 40-47.	2.5	36
20	Modulation of formin processivity by profilin and mechanical tension. ELife, 2018, 7, .	6.0	43
21	Using Microfluidics Single Filament Assay to Study Formin Control of Actin Assembly. Methods in Molecular Biology, 2018, 1805, 75-92.	0.9	8
22	Oxidation of F-actin controls the terminal steps of cytokinesis. Nature Communications, 2017, 8, 14528.	12.8	130
23	ADF/Cofilin Accelerates Actin Dynamics by Severing Filaments and Promoting Their Depolymerization at Both Ends. Current Biology, 2017, 27, 1956-1967.e7.	3.9	179
24	Modulating Formin Processivity with Mechanical and Biochemical Factors. Biophysical Journal, 2017, 112, 560a-561a.	0.5	0
25	Emerging roles of MICAL family proteins – from actin oxidation to membrane trafficking during cytokinesis. Journal of Cell Science, 2017, 130, 1509-1517.	2.0	63
26	Single Filaments to Reveal the Multiple Flavors of Actin. Biophysical Journal, 2016, 110, 2138-2146.	0.5	21
27	Formin and capping protein together embrace the actin filament in a ménage à trois. Nature Communications, 2015, 6, 8730.	12.8	80
28	Spire and Formin 2 Synergize and Antagonize in Regulating Actin Assembly in Meiosis by a Ping-Pong Mechanism. PLoS Biology, 2014, 12, e1001795.	5.6	76
29	Actin Filament Dynamics Using Microfluidics. Methods in Enzymology, 2014, 540, 3-17.	1.0	19
30	Cellular Control of Cortical Actin Nucleation. Current Biology, 2014, 24, 1628-1635.	3.9	219
31	Mechanotransduction down to individual actin filaments. European Journal of Cell Biology, 2013, 92, 333-338.	3.6	51
32	CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. EMBO Journal, 2013, 32, 2735-2750.	7.8	116
33	Interplay of Stochastic Processes during Actin Depolymerization. Biophysical Journal, 2013, 104, 645a.	0.5	0
34	On Phosphate Release in Actin Filaments. Biophysical Journal, 2013, 104, 2778-2779.	0.5	4
35	Formin mDia1 senses and generates mechanical forces on actin filaments. Nature Communications, 2013, 4, 1883.	12.8	190
36	Dimeric WH2 domains in VibrioÂVopF promote actin filament barbed-end uncapping and assisted elongation. Nature Structural and Molecular Biology, 2013, 20, 1069-1076.	8.2	44

#	Article	IF	CITATIONS
37	Mycolactone activation of Wiskott-Aldrich syndrome proteins underpins Buruli ulcer formation. Journal of Clinical Investigation, 2013, 123, 1501-1512.	8.2	79
38	Supramolecular Assemblies of Lipid-Coated Polyelectrolytes. Langmuir, 2012, 28, 5743-5752.	3.5	6
39	Intermittent depolymerization of actin filaments is caused by photo-induced dimerization of actin protomers. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10769-10774.	7.1	36
40	Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters. Cell, 2012, 148, 502-514.	28.9	362
41	Microfluidics pushes forward microscopy analysis of actin dynamics. Bioarchitecture, 2011, 1, 271-276.	1.5	17
42	Individual Actin Filaments in a Microfluidic Flow Reveal the Mechanism of ATP Hydrolysis and Give Insight Into the Properties of Profilin. PLoS Biology, 2011, 9, e1001161.	5.6	138
43	BIOMIMETIC SYSTEMS SHED LIGHT ON ACTIN-BASED MOTILITY DOWN TO THE MOLECULAR SCALE. Biophysical Reviews and Letters, 2009, 04, 5-15.	0.8	1
44	How do in vitro reconstituted actinâ€based motility assays provide insight into in vivo behavior?. FEBS Letters, 2008, 582, 2086-2092.	2.8	14
45	Arp2/3 Controls the Motile Behavior of N-WASP-Functionalized GUVs and Modulates N-WASP Surface Distribution by Mediating Transient Links with Actin Filaments. Biophysical Journal, 2008, 94, 4890-4905.	0.5	50
46	Actin-based propulsion of functionalized hard versus fluid spherical objects. New Journal of Physics, 2008, 10, 025001.	2.9	11
47	Force generation by dynamic microtubules. Current Opinion in Cell Biology, 2005, 17, 67-74.	5.4	228
48	Three-Dimensional Control of Protein Patterning in Microfabricated Devices. Nano Letters, 2005, 5, 2350-2354.	9.1	22