Julie Diani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4759186/publications.pdf Version: 2024-02-01

LULIE DIANL

#	Article	IF	CITATIONS
1	Variational upscaling for modeling state of strain-dependent behavior and stress-induced crystallization in rubber-like materials. Continuum Mechanics and Thermodynamics, 2021, 33, 749-766.	2.2	1
2	Use of a micromechanical approach to understand the mechanical behavior of solid propellants. Mechanics of Materials, 2021, 153, 103656.	3.2	22
3	Linear viscoelasticity of an acrylate IPN, analysis and micromechanical modeling. Soft Matter, 2021, 17, 7341-7349.	2.7	3
4	Comparison of the finite strain macroscopic behavior and local damage of a soft matrix highly reinforced by spherical or polyhedral particles. European Journal of Mechanics, A/Solids, 2020, 84, 104070.	3.7	9
5	Experimental identification of fracture toughness of a carbon black-filled styrene butadiene rubber undergoing energy dissipation by Mullins softening. Mechanics of Materials, 2020, 151, 103645.	3.2	4
6	Relationship between local damage and macroscopic response of soft materials highly reinforced by monodispersed particles. Mechanics of Materials, 2020, 146, 103408.	3.2	15
7	Representative volume elements for the simulation of isotropic composites highly filled with monosized spheres. International Journal of Solids and Structures, 2019, 158, 277-286.	2.7	20
8	Critical strain energy release rate for rubbers: single edge notch tension versus pure shear tests. International Journal of Fracture, 2019, 216, 31-39.	2.2	14
9	Experimental investigation of elastomer mode I fracture: an attempt to estimate the critical strain energy release rate using SENT tests. International Journal of Fracture, 2018, 209, 163-170.	2.2	6
10	Stress-strain response and volume change of a highly filled rubbery composite: Experimental measurements and numerical simulations. Mechanics of Materials, 2017, 111, 57-65.	3.2	16
11	On necessary precautions when measuring solid polymer linear viscoelasticity with dynamic analysis in torsion. Polymer Testing, 2017, 63, 275-280.	4.8	14
12	Roles of the Interphase Stiffness and Percolation on the Behavior of Solid Propellants. Propellants, Explosives, Pyrotechnics, 2016, 41, 978-986.	1.6	7
13	On the account of a cohesive interface for modeling the behavior until break of highly filled elastomers. Mechanics of Materials, 2016, 93, 124-133.	3.2	27
14	Effect of the Mullins softening on mode I fracture of carbon-black filled rubbers. International Journal of Fracture, 2015, 194, 11-18.	2.2	8
15	Physical interpretation of the Mullins softening in a carbon-black filled SBR. Polymer, 2014, 55, 4942-4947.	3.8	54
16	Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. International Journal of Solids and Structures, 2012, 49, 793-799.	2.7	181
17	A Mullins softening criterion for general loading conditions. Journal of the Mechanics and Physics of Solids, 2012, 60, 1257-1264.	4.8	33
18	Experimental characterization and modelling of the cyclic softening of carbon-black filled rubbers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8651-8659.	5.6	15

#	Article	IF	CITATIONS
19	A review on the Mullins effect. European Polymer Journal, 2009, 45, 601-612.	5.4	884