Ahmed A Othman, Fcp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4759167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of the potential drug interactions mediated through Pâ€gp, OCT2, and MATE1/2K with filgotinib in healthy subjects. Clinical and Translational Science, 2022, 15, 361-370.	1.5	6
2	Assessment of the Effect of Filgotinib on the Pharmacokinetics of Atorvastatin, Pravastatin, and Rosuvastatin in Healthy Adult Participants. Clinical Pharmacology in Drug Development, 2022, 11, 235-245.	0.8	8
3	Evaluation of the potential for pharmacokinetic interaction between tirabrutinib and levonorgestrel/ethinyl estradiol in healthy female volunteers. Clinical and Translational Science, 2022, , .	1.5	1
4	Utility of Modeling and Simulation Approach to Support the Clinical Relevance of Dissolution Specifications: a Case Study from Upadacitinib Development. AAPS Journal, 2022, 24, 39.	2.2	2
5	Oral Clucose Tolerance Test: An Informative Endpoint or an Added Burden in Metformin <scp>Drug–Drug</scp> Interaction Studies?. Clinical Pharmacology and Therapeutics, 2022, 112, 453-455.	2.3	4
6	Characterization of the Effect of Upadacitinib on the Pharmacokinetics of Bupropion, a Sensitive Cytochrome P450 2B6 Probe Substrate. Clinical Pharmacology in Drug Development, 2021, 10, 299-306.	0.8	4
7	Exposureâ€Response Analyses for Upadacitinib Efficacy in Subjects With Atopic Dermatitis—Analyses of Phase 2b Study to Support Selection of Phase 3 Doses. Journal of Clinical Pharmacology, 2021, 61, 628-635.	1.0	8
8	Therapeutic Protein Drug Interaction Potential in Subjects With Psoriasis: An Assessment Based on Population Pharmacokinetic Analyses of Sensitive Cytochrome P450 Probe Substrates. Journal of Clinical Pharmacology, 2021, 61, 307-318.	1.0	3
9	Effect of Upadacitinib on the Pharmacokinetics of Rosuvastatin or Atorvastatin in Healthy Subjects. Clinical Pharmacology in Drug Development, 2021, 10, 1335-1344.	0.8	2
10	Exposure-Response Analyses of the Effects of Venetoclax, a Selective BCL-2 Inhibitor, on B-Lymphocyte and Total Lymphocyte Counts in Women with Systemic Lupus Erythematosus. Clinical Pharmacokinetics, 2020, 59, 335-347.	1.6	5
11	Effects of Upadacitinib Coadministration on the Pharmacokinetics of Sensitive Cytochrome P450 Probe Substrates: A Study With the Modified Cooperstown 5+1 Cocktail. Journal of Clinical Pharmacology, 2020, 60, 86-95.	1.0	13
12	Exposure–Response Relationships for Efficacy and Safety of Risankizumab in Phase II and III Trials in Psoriasis Patients. Clinical Pharmacology and Therapeutics, 2020, 107, 378-387.	2.3	13
13	Preferential Inhibition of JAK1 Relative to JAK3 by Upadacitinib: Exposureâ€Response Analyses of Ex Vivo Data From 2 Phase 1 Clinical Trials and Comparison to Tofacitinib. Journal of Clinical Pharmacology, 2020, 60, 188-197.	1.0	30
14	Pharmacokinetics of Upadacitinib in Healthy Subjects and Subjects With Rheumatoid Arthritis, Crohn's Disease, Ulcerative Colitis, or Atopic Dermatitis: Population Analyses of Phase 1 and 2 Clinical Trials. Journal of Clinical Pharmacology, 2020, 60, 528-539.	1.0	26
15	Exposure–Response Relationships for the Efficacy and Safety of Risankizumab in Japanese Subjects with Psoriasis. Clinical Pharmacokinetics, 2020, 59, 575-589.	1.6	15
16	Metaâ€Analyses of Clinical Efficacy of Risankizumab and Adalimumab in Chronic Plaque Psoriasis: Supporting Evidence of Risankizumab Superiority. Clinical Pharmacology and Therapeutics, 2020, 107, 435-442.	2.3	14
17	Exposure–Response Analyses for Upadacitinib Efficacy and Safety in the Crohn's Disease CELEST Study and Bridging to the Extendedâ€Release Formulation. Clinical Pharmacology and Therapeutics, 2020, 107, 639-649.	2.3	10
18	Exposure–Response Analyses of Upadacitinib Efficacy and Safety in Phase II and III Studies to Support Benefit–Risk Assessment in Rheumatoid Arthritis. Clinical Pharmacology and Therapeutics, 2020, 107, 994-1003.	2.3	21

Ahmed A Othman, Fcp

#	Article	IF	CITATIONS
19	Clinical Pharmacokinetics of Upadacitinib: Review of Data Relevant to the Rheumatoid Arthritis Indication. Clinical Pharmacokinetics, 2020, 59, 531-544.	1.6	38
20	Clinical Pharmacokinetics and Pharmacodynamics of Risankizumab in Psoriasis Patients. Clinical Pharmacokinetics, 2020, 59, 311-326.	1.6	20
21	Upadacitinib in adults with moderate to severe atopic dermatitis: 16-week results from a randomized, placebo-controlled trial. Journal of Allergy and Clinical Immunology, 2020, 145, 877-884.	1.5	242
22	Efficacy of Upadacitinib in a Randomized Trial of Patients With Active Ulcerative Colitis. Gastroenterology, 2020, 158, 2139-2149.e14.	0.6	171
23	Efficacy and Safety of Upadacitinib in a Randomized Trial of Patients With Crohn's Disease. Gastroenterology, 2020, 158, 2123-2138.e8.	0.6	189
24	Efficacy and safety of upadacitinib in Japanese patients with rheumatoid arthritis (SELECT-SUNRISE): a placebo-controlled phase IIb/III study. Rheumatology, 2020, 59, 3303-3313.	0.9	41
25	Population Pharmacokinetics of the Interleukin-23 Inhibitor Risankizumab in Subjects with Psoriasis and Crohn's Disease: Analyses of Phase I and II Trials. Clinical Pharmacokinetics, 2019, 58, 375-387.	1.6	25
26	Upadacitinib Versus Placebo or Adalimumab in Patients With Rheumatoid Arthritis and an Inadequate Response to Methotrexate: Results of a Phase <scp>III</scp> , Doubleâ€Blind, Randomized Controlled Trial. Arthritis and Rheumatology, 2019, 71, 1788-1800.	2.9	284
27	Pharmacokinetics of Risankizumab in Asian Healthy Subjects and Patients With Moderate to Severe Plaque Psoriasis, Generalized Pustular Psoriasis, and Erythrodermic Psoriasis. Journal of Clinical Pharmacology, 2019, 59, 1656-1668.	1.0	24
28	Development of In Vitro–In Vivo Correlation for Upadacitinib Extended-Release Tablet Formulation. AAPS Journal, 2019, 21, 108.	2.2	15
29	Exposure–Response Analyses of Upadacitinib Efficacy in Phase II Trials in Rheumatoid Arthritis and Basis for Phase III Dose Selection. Clinical Pharmacology and Therapeutics, 2019, 106, 1319-1327.	2.3	13
30	Upadacitinib as monotherapy in patients with active rheumatoid arthritis and inadequate response to methotrexate (SELECT-MONOTHERAPY): a randomised, placebo-controlled, double-blind phase 3 study. Lancet, The, 2019, 393, 2303-2311.	6.3	237
31	Population Pharmacokinetics of Risankizumab in Healthy Volunteers and Subjects with Moderate to Severe Plaque Psoriasis: Integrated Analyses of Phase l–III Clinical Trials. Clinical Pharmacokinetics, 2019, 58, 1309-1321.	1.6	25
32	Population Pharmacokinetics of Upadacitinib Using the Immediate-Release and Extended-Release Formulations in Healthy Subjects and Subjects with Rheumatoid Arthritis: Analyses of Phase I–III Clinical Trials. Clinical Pharmacokinetics, 2019, 58, 1045-1058.	1.6	42
33	Models of Variability and Circadian Rhythm in Heart Rate, Blood Pressure, and <scp>QT</scp> Interval for Healthy Subjects Who Received Placebo in Phase I Trials. Clinical and Translational Science, 2019, 12, 470-480.	1.5	8
34	Characterization of the Effect of Hepatic Impairment on Upadacitinib Pharmacokinetics. Journal of Clinical Pharmacology, 2019, 59, 1188-1194.	1.0	16
35	Pharmacokinetics, Safety, and Tolerability of the Dual Inhibitor of Tumor Necrosis Factorâ€Î± and Interleukin 17A, ABBVâ€257, in Healthy Volunteers and Patients With Rheumatoid Arthritis. Clinical Pharmacology in Drug Development, 2019, 8, 492-502.	0.8	1
36	Lack of Effect of 12-Week Treatment with Risankizumab on the Pharmacokinetics of Cytochrome P450 Probe Substrates in Patients with Moderate to Severe Chronic Plaque Psoriasis. Clinical Pharmacokinetics, 2019, 58, 805-814.	1.6	25

#	Article	IF	CITATIONS
37	Characterization of the Effect of Renal Impairment on Upadacitinib Pharmacokinetics. Journal of Clinical Pharmacology, 2019, 59, 856-862.	1.0	29
38	Exposure–response analyses demonstrate no evidence of interleukin 17A contribution to efficacy of ABT-122 in rheumatoid or psoriatic arthritis. Rheumatology, 2019, 58, 352-360.	0.9	17
39	The JAK1 Inhibitor Upadacitinib Has No Effect on the Pharmacokinetics of Levonorgestrel and Ethinylestradiol: A Study in Healthy Female Subjects. Journal of Clinical Pharmacology, 2019, 59, 510-516.	1.0	14
40	Pharmacokinetics of Upadacitinib With the Clinical Regimens of the Extendedâ€Release Formulation Utilized in Rheumatoid Arthritis Phase 3 Trials. Clinical Pharmacology in Drug Development, 2019, 8, 208-216.	0.8	42
41	Pharmacokinetics of the B-Cell Lymphoma 2 (Bcl-2) Inhibitor Venetoclax in Female Subjects with Systemic Lupus Erythematosus. Clinical Pharmacokinetics, 2018, 57, 1185-1198.	1.6	7
42	Metabolism and Disposition of a Novel Selective α7 Neuronal Acetylcholine Receptor Agonist ABT-126 in Humans: Characterization of the Major Roles for Flavin-Containing Monooxygenases and UDP-Glucuronosyl Transferase 1A4 and 2B10 in Catalysis. Drug Metabolism and Disposition, 2018, 46, 429-439.	1.7	5
43	Population Pharmacokinetics of the TNFâ€Î± and ILâ€17A Dualâ€Variable Domain Antibody ABTâ€122 in Healthy Volunteers and Subjects With Psoriatic or Rheumatoid Arthritis: Analysis of Phase 1 and 2 Clinical Trials. Journal of Clinical Pharmacology, 2018, 58, 803-813.	1.0	11
44	Pharmacokinetics of ABT-122, a TNF-α- and IL-17A-Targeted Dual-Variable Domain Immunoglobulin, in Healthy Subjects and Patients with Rheumatoid Arthritis: Results from Three Phase I Trials. Clinical Pharmacokinetics, 2018, 57, 613-623.	1.6	17
45	Population Pharmacokinetics of Upadacitinib in Healthy Subjects and Subjects with Rheumatoid Arthritis: Analyses of Phase I and II Clinical Trials. Clinical Pharmacokinetics, 2018, 57, 977-988.	1.6	64
46	Use of Early Clinical Trial Data to Support Thorough QT Study Waiver for Upadacitinib and Utility of Food Effect to Demonstrate ECG Assay Sensitivity. Clinical Pharmacology and Therapeutics, 2018, 103, 836-842.	2.3	13
47	Dual inhibition of tumour necrosis factor and interleukin-17A with ABT-122: open-label long-term extension studies in rheumatoid arthritis or psoriatic arthritis. Rheumatology, 2018, 57, 1972-1981.	0.9	30
48	Safety and efficacy of upadacitinib in patients with rheumatoid arthritis and inadequate response to conventional synthetic disease-modifying anti-rheumatic drugs (SELECT-NEXT): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet, The, 2018, 391, 2503-2512.	6.3	280
49	Assessment of effect of CYP3A inhibition, CYP induction, OATP1B inhibition, and highâ€fat meal on pharmacokinetics of the JAK1 inhibitor upadacitinib. British Journal of Clinical Pharmacology, 2017, 83, 2242-2248.	1.1	49
50	Levodopa-Carbidopa Intestinal Gel Pharmacokinetics: Lower Variability than Oral Levodopa-Carbidopa. Journal of Parkinson's Disease, 2017, 7, 275-278.	1.5	29
51	Use of a Novel Artificial Intelligence Platform on Mobile Devices to Assess Dosing Compliance in a Phase 2 Clinical Trial in Subjects With Schizophrenia. JMIR MHealth and UHealth, 2017, 5, e18.	1.8	87
52	Therapeutic protein–drug interaction assessment for daclizumab highâ€yield process in patients with multiple sclerosis using a cocktail approach. British Journal of Clinical Pharmacology, 2016, 82, 160-167.	1.1	25
53	Population Pharmacokinetics of Daclizumab High-Yield Process in Healthy Volunteers and Subjects with Multiple Sclerosis: Analysis of Phase l–III Clinical Trials. Clinical Pharmacokinetics, 2016, 55, 943-955.	1.6	18
54	A Phase IIb Study of ABTâ€494, a Selective JAKâ€1 Inhibitor, in Patients With Rheumatoid Arthritis and an Inadequate Response to Anti–Tumor Necrosis Factor Therapy. Arthritis and Rheumatology, 2016, 68, 2867-2877.	2.9	149

#	Article	IF	CITATIONS
55	Efficacy and Safety of ABTâ€494, a Selective JAKâ€1 Inhibitor, in a Phase IIb Study in Patients With Rheumatoid Arthritis and an Inadequate Response to Methotrexate. Arthritis and Rheumatology, 2016, 68, 2857-2866.	2.9	172
56	Pharmacokinetics, Safety and Tolerability of ABT-494, a Novel Selective JAK 1 Inhibitor, in Healthy Volunteers and Subjects with Rheumatoid Arthritis. Clinical Pharmacokinetics, 2016, 55, 1547-1558.	1.6	92
57	Blockade of the High-Affinity Interleukin-2 Receptors with Daclizumab High-Yield Process: Pharmacokinetic/Pharmacodynamic Analysis of Single- and Multiple-Dose Phase I Trials. Clinical Pharmacokinetics, 2016, 55, 121-130.	1.6	9
58	Jejunal Infusion of Levodopa–Carbidopa Intestinal Gel Versus Oral Administration of Levodopa–Carbidopa Tablets in Japanese Subjects with Advanced Parkinson's Disease: Pharmacokinetics and Pilot Efficacy and Safety. Clinical Pharmacokinetics, 2015, 54, 975-984.	1.6	18
59	Population pharmacokinetics of levodopa in subjects with advanced <scp>P</scp> arkinson's disease: levodopaâ€carbidopa intestinal gel infusion <i>vs</i> . oral tablets. British Journal of Clinical Pharmacology, 2014, 78, 94-105.	1.1	37
60	Population Pharmacokinetics of Daclizumab High-Yield Process in Healthy Volunteers: Integrated Analysis of Intravenous and Subcutaneous, Single- and Multiple-Dose Administration. Clinical Pharmacokinetics, 2014, 53, 907-918.	1.6	28
61	The H3antagonist ABT-288 is tolerated at significantly higher exposures in subjects with schizophrenia than in healthy volunteers. British Journal of Clinical Pharmacology, 2014, 77, 965-974.	1.1	13